Paul N. Valdmanis
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul N. Valdmanis.
Science | 2009
Thomas J. Kwiatkowski; Daryl A. Bosco; Ashley Lyn Leclerc; E. Tamrazian; Charles R. Vanderburg; Carsten Russ; A. Davis; J. Gilchrist; E. J. Kasarskis; T. Munsat; Paul N. Valdmanis; Guy A. Rouleau; Betsy A. Hosler; Pietro Cortelli; P. J. De Jong; Yuko Yoshinaga; Jonathan L. Haines; Margaret A. Pericak-Vance; Jianhua Yan; Nicola Ticozzi; Teepu Siddique; Diane McKenna-Yasek; Peter C. Sapp; H. R. Horvitz; John Landers; Robert H. Brown
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder. Ten percent of cases are inherited; most involve unidentified genes. We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS. The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus. In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS. Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.
Nature Genetics | 2008
Edor Kabashi; Paul N. Valdmanis; Patrick A. Dion; Dan Spiegelman; Brendan J. McConkey; Christine Vande Velde; Jean-Pierre Bouchard; Lucette Lacomblez; Ksenia Pochigaeva; François Salachas; Pierre-François Pradat; William Camu; Vincent Meininger; Nicolas Dupré; Guy A. Rouleau
Recently, TDP-43 was identified as a key component of ubiquitinated aggregates in amyotrophic lateral sclerosis (ALS), an adult-onset neurological disorder that leads to the degeneration of motor neurons. Here we report eight missense mutations in nine individuals—six from individuals with sporadic ALS (SALS) and three from those with familial ALS (FALS)—and a concurring increase of a smaller TDP-43 product. These findings further corroborate that TDP-43 is involved in ALS pathogenesis.
Neurology | 2008
Paul N. Valdmanis; Guy A. Rouleau
The completion of the Human Genome Project, together with a better understanding of some of the emerging genetic patterns of human disease, has enabled a thorough examination of the most appropriate genetic models for amyotrophic lateral sclerosis (ALS). The pathology and epidemiology of ALS have been intensively studied since Adar, Charcot, and Duchenne first described the disease in the 1860s. Results of genetic studies that have emerged over the past two decades have led to the identification of SOD1 as a well-established causative gene for ALS. However, the identification of SOD1 has not been followed up by the identification of other genes responsible for classic ALS. This leads to the speculation that more complex genetic mechanisms are involved than initially assumed. While mutations in single genes are still likely to constitute a small proportion of ALS cases, the genes responsible for ALS in families with clusters of two or three affected individuals, and more particularly in sporadic cases, are far from being determined. Multigenic, somatic mutation, and gene–environment models may all contribute to the genetic etiology of ALS. The challenge now lies in determining which models are the most appropriate to dissect out the genetic components involved. This research will ultimately aid in identifying the cumulative risk of developing ALS. GLOSSARY: ALS = amyotrophic lateral sclerosis; FALS = familial ALS; FTD = frontotemporal dementia; HSP = hereditary spastic paraplegia; PDC = Parkinson-dementia complex; PLS = primary lateral sclerosis; PON = paraoxonase; SALS = sporadic ALS; SBMA = spinal and bulbar muscular atrophy; SMA = spinal muscular atrophy; SNP = single nucleotide polymorphism.
Journal of Medical Genetics | 2008
Hussein Daoud; Paul N. Valdmanis; Edor Kabashi; Patrick A. Dion; Nicolas Dupré; William Camu; Vincent Meininger; Guy A. Rouleau
Aims and background: Mutations in the TARDBP gene, which encodes the TAR DNA binding protein (TDP-43), have been described in individuals with familial and sporadic amyotrophic lateral sclerosis (ALS). We screened the TARDBP gene in 285 French sporadic ALS patients to assess the frequency of TARDBP mutations in ALS. Results: Six individuals had potentially deleterious mutations of which three were novel including a Y374X truncating mutation and P363A and A382P missense mutations. This suggests that TARDBP mutations may predispose to ALS in approximately 2% of the individuals followed in this study. Conclusion: Our findings, combined with those from other collections, brings the total number of mutations in unrelated ALS patients to 17, further suggesting that mutations in the TARDBP gene have an important role in the pathogenesis of ALS.
American Journal of Human Genetics | 2007
Paul N. Valdmanis; Inge A. Meijer; Annie Reynolds; Adrienne Lei; Patrick MacLeod; David Schlesinger; Mayana Zatz; Evan Reid; Patrick A. Dion; Pierre Drapeau; Guy A. Rouleau
Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. The eighth HSP locus, SPG8, is on chromosome 8p24.13. The three families previously linked to the SPG8 locus present with relatively severe, pure spastic paraplegia. We have identified three mutations in the KIAA0196 gene in six families that map to the SPG8 locus. One mutation, V626F, segregated in three large North American families with European ancestry and in one British family. An L619F mutation was found in a Brazilian family. The third mutation, N471D, was identified in a smaller family of European origin and lies in a spectrin domain. None of these mutations were identified in 500 control individuals. Both the L619 and V626 residues are strictly conserved across species and likely have a notable effect on the structure of the protein product strumpellin. Rescue studies with human mRNA injected in zebrafish treated with morpholino oligonucleotides to knock down the endogenous protein showed that mutations at these two residues impaired the normal function of the KIAA0196 gene. However, the function of the 1,159-aa strumpellin protein is relatively unknown. The identification and characterization of the KIAA0196 gene will enable further insight into the pathogenesis of HSP.
Annals of Neurology | 2007
Edor Kabashi; Paul N. Valdmanis; Patrick A. Dion; Guy A. Rouleau
The identification in 1993 of superoxide dismutase‐1 (SOD1) mutations as the cause of 10 to 20% of familial amyotrophic lateral sclerosis cases, which represents 1 to 2% of all amyotrophic lateral sclerosis (ALS) cases, prompted a substantial amount of research into the mechanisms of SOD1‐mediated toxicity. Recent experiments have demonstrated that oxidation of wild‐type SOD1 leads to its misfolding, causing it to gain many of the same toxic properties as mutant SOD1. In vitro studies of oxidized/misfolded SOD1 and in vivo studies of misfolded SOD1 have indicated that these protein species are selectively toxic to motor neurons, suggesting that oxidized/misfolded SOD1 could lead to ALS even in individuals who do not carry an SOD1 mutation. It has also been reported that glial cells secrete oxidized/misfolded mutant SOD1 to the extracellular environment, where it can trigger the selective death of motor neurons, offering a possible explanation for the noncell autonomous nature of mutant SOD1 toxicity and the rapid progression of disease once the first symptoms develop. Therefore, considering that sporadic (SALS) and familial ALS (FALS) cases are clinically indistinguishable, the toxic properties of mutated SOD1 are similar to that of oxidized/misfolded wild‐type SOD1 (wtSOD1), and secreted/extracellular misfolded SOD1 is selectively toxic to motor neurons, we propose that oxidized/misfolded SOD1 is the cause of most forms of classic ALS and should be a prime target for the design of ALS treatments. Ann Neurol 2007
Neurology | 2009
Véronique V. Belzil; Paul N. Valdmanis; Patrick A. Dion; Hussein Daoud; Edor Kabashi; Anne Noreau; J. Gauthier; P. Hince; Anne Desjarlais; Jean-Pierre Bouchard; Lucette Lacomblez; François Salachas; Pierre-François Pradat; William Camu; Vincent Meininger; Nicolas Dupré; Guy A. Rouleau
Background: The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. Methods: To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. Results: In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Conclusions: Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.
Nature | 2015
Adi Barzel; Nicole K. Paulk; Y. Shi; Yong Huang; Kirk Chu; Feijie Zhang; Paul N. Valdmanis; L. P. Spector; Matthew H. Porteus; K. M. Gaensler; Mark A. Kay
Site-specific gene addition can allow stable transgene expression for gene therapy. When possible, this is preferred over the use of promiscuously integrating vectors, which are sometimes associated with clonal expansion and oncogenesis. Site-specific endonucleases that can induce high rates of targeted genome editing are finding increasing applications in biological discovery and gene therapy. However, two safety concerns persist: endonuclease-associated adverse effects, both on-target and off-target; and oncogene activation caused by promoter integration, even without nucleases. Here we perform recombinant adeno-associated virus (rAAV)-mediated promoterless gene targeting without nucleases and demonstrate amelioration of the bleeding diathesis in haemophilia B mice. In particular, we target a promoterless human coagulation factor IX (F9) gene to the liver-expressed mouse albumin (Alb) locus. F9 is targeted, along with a preceding 2A-peptide coding sequence, to be integrated just upstream to the Alb stop codon. While F9 is fused to Alb at the DNA and RNA levels, two separate proteins are synthesized by way of ribosomal skipping. Thus, F9 expression is linked to robust hepatic albumin expression without disrupting it. We injected an AAV8-F9 vector into neonatal and adult mice and achieved on-target integration into ∼0.5% of the albumin alleles in hepatocytes. We established that F9 was produced only from on-target integration, and ribosomal skipping was highly efficient. Stable F9 plasma levels at 7–20% of normal were obtained, and treated F9-deficient mice had normal coagulation times. In conclusion, transgene integration as a 2A-fusion to a highly expressed endogenous gene may obviate the requirement for nucleases and/or vector-borne promoters. This method may allow for safe and efficacious gene targeting in both infants and adults by greatly diminishing off-target effects while still providing therapeutic levels of expression from integration.
Journal of Neurology, Neurosurgery, and Psychiatry | 2010
Ansgar Felbecker; William Camu; Paul N. Valdmanis; Anne-Dorte Sperfeld; Stefan Waibel; Peter Steinbach; Guy A. Rouleau; Albert C. Ludolph; Peter Andersen
Background 153 mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been claimed to be associated with amyotrophic lateral sclerosis (ALS) in familial and sporadic ALS in an autosomal dominant or autosomal recessive pattern with complete or reduced penetrance. The authors now report four ALS pedigrees from Finland, France, Germany and Sweden with either the D90A or E100K SOD1 mutations in some but not all affected members. After re-collecting DNA, the non-segregation of the SOD1 mutations with disease was confirmed by three independent laboratories using different PCR primers: while some of the affected patients carry SOD1 mutations, other affected family members have two wildtype/normal SOD1 genes. In addition, some unaffected members within the same families are carriers of SOD1 gene mutations. To exclude other known genetic causes, the authors ruled out mutations within the genes coding for VAPB, ANG, TDP43, FUS and DCTN1 in affected individuals in the four pedigrees. Conclusions The authors find that the D90A and E100K SOD1 gene mutations found in some patients are not the exclusive cause of ALS in these pedigrees. Whether this is also the case for the other 151 SOD1 mutations reported in ALS pedigrees is unknown. The findings have consequences for genetic testing in clinical practice when diagnosing ALS and for genetic counselling in ALS. Some SOD1 mutations may be part of an oligo- or epigentic pattern of inheritance. Such a pattern of inheritance may model other oligo- or polygenetic traits responsible for other forms of ALS.
Neurology | 2009
A-M. Wills; Simon Cronin; Agnieszka Slowik; Dalia Kasperaviciute; M. A. van Es; Julia M. Morahan; Paul N. Valdmanis; Vincent Meininger; J. Melki; Christopher Shaw; Guy A. Rouleau; Elizabeth M. C. Fisher; Pamela J. Shaw; Karen E. Morrison; Roger Pamphlett; L. H. van den Berg; Denise A. Figlewicz; Peter Andersen; Ammar Al-Chalabi; Orla Hardiman; Shaun Purcell; John Landers; Robert H. Brown
Background: Six candidate gene studies report a genetic association of DNA variants within the paraoxonase locus with sporadic amyotrophic lateral sclerosis (ALS). However, several other large studies, including five genome-wide association studies, have not duplicated this finding. Methods: We conducted a meta-analysis of 10 published studies and one unpublished study of the paraoxonase locus, encompassing 4,037 ALS cases and 4,609 controls, including genome-wide association data from 2,018 ALS cases and 2,425 controls. Results: The combined fixed effects odds ratio (OR) for rs662 (PON1 Q192R) was 1.09 (95% confidence interval [CI], 1.02–1.16, p = 0.01); the genotypic OR for RR homozygotes at Q192R was 1.25 (95% CI, 1.07–1.45, p = 0.0004); the combined OR for rs854560 (PON1 L55M) was 0.97 (95% CI, 0.86–1.10, p = 0.62); the OR for rs10487132 (PON2) was 1.08 (95% CI, 0.92–1.27, p = 0.35). Although the rs662 polymorphism reached a nominal level of significance, no polymorphism was significant after multiple testing correction. In the subanalysis of samples with genome-wide data from which population outliers were removed, rs662 had an OR of 1.06 (95% CI, 0.97–1.16, p = 0.22). Conclusions: In contrast to previous positive smaller studies, our genetic meta-analysis showed no significant association of amyotrophic lateral sclerosis (ALS) with the PON locus. This is the largest meta-analysis of a candidate gene in ALS to date and the first ALS meta-analysis to include data from whole genome association studies. The findings reinforce the need for much larger and more collaborative investigations of the genetic determinants of ALS.