Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Peluso is active.

Publication


Featured researches published by Paul Peluso.


Science | 2009

Real-Time DNA Sequencing from Single Polymerase Molecules

John Eid; Adrian Fehr; Jeremy Gray; Khai Luong; John Lyle; Geoff Otto; Paul Peluso; David Rank; Primo Baybayan; Brad Bettman; Arkadiusz Bibillo; Keith Bjornson; Bidhan Chaudhuri; Frederick Christians; Ronald L. Cicero; Sonya Clark; Ravindra Dalal; Alex deWinter; John Dixon; Mathieu Foquet; Alfred Gaertner; Paul Hardenbol; Cheryl Heiner; Kevin Hester; David Holden; Gregory Kearns; Xiangxu Kong; Ronald Kuse; Yves Lacroix; Steven Lin

We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.


The New England Journal of Medicine | 2011

Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany.

David A. Rasko; Dale Webster; Jason W. Sahl; Ali Bashir; Nadia Boisen; Flemming Scheutz; Ellen E. Paxinos; Robert Sebra; Chen Shan Chin; Dimitris Iliopoulos; Aaron Klammer; Paul Peluso; Lawrence Lee; Andrey Kislyuk; James Bullard; Andrew Kasarskis; Susanna Wang; John Eid; David Rank; Julia C. Redman; Susan R. Steyert; Jakob Frimodt-Møller; Carsten Struve; Andreas Petersen; Karen A. Krogfelt; James P. Nataro; Eric E. Schadt; Matthew K. Waldor

BACKGROUND A large outbreak of diarrhea and the hemolytic-uremic syndrome caused by an unusual serotype of Shiga-toxin-producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin-producing E. coli have been reported--3167 without the hemolytic-uremic syndrome (16 deaths) and 908 with the hemolytic-uremic syndrome (34 deaths)--indicating that this strain is notably more virulent than most of the Shiga-toxin-producing E. coli strains. Preliminary genetic characterization of the outbreak strain suggested that, unlike most of these strains, it should be classified within the enteroaggregative pathotype of E. coli. METHODS We used third-generation, single-molecule, real-time DNA sequencing to determine the complete genome sequence of the German outbreak strain, as well as the genome sequences of seven diarrhea-associated enteroaggregative E. coli serotype O104:H4 strains from Africa and four enteroaggregative E. coli reference strains belonging to other serotypes. Genomewide comparisons were performed with the use of these enteroaggregative E. coli genomes, as well as those of 40 previously sequenced E. coli isolates. RESULTS The enteroaggregative E. coli O104:H4 strains are closely related and form a distinct clade among E. coli and enteroaggregative E. coli strains. However, the genome of the German outbreak strain can be distinguished from those of other O104:H4 strains because it contains a prophage encoding Shiga toxin 2 and a distinct set of additional virulence and antibiotic-resistance factors. CONCLUSIONS Our findings suggest that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli O104:H4 strain that caused the German outbreak. More broadly, these findings highlight the way in which the plasticity of bacterial genomes facilitates the emergence of new pathogens.


The New England Journal of Medicine | 2011

The Origin of the Haitian Cholera Outbreak Strain

Chen Shan Chin; Jon Sorenson; Jason B. Harris; William P. Robins; Richelle C. Charles; Roger R. Jean-Charles; James Bullard; Dale Webster; Andrew Kasarskis; Paul Peluso; Ellen E. Paxinos; Yoshiharu Yamaichi; Stephen B. Calderwood; John J. Mekalanos; Eric E. Schadt; Matthew K. Waldor

BACKGROUND Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti. METHODS We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008. Using primary sequence data, we compared the genomes of these 5 strains and a set of previously obtained partial genomic sequences of 23 diverse strains of V. cholerae to assess the likely origin of the cholera outbreak in Haiti. RESULTS Both single-nucleotide variations and the presence and structure of hypervariable chromosomal elements indicate that there is a close relationship between the Haitian isolates and variant V. cholerae El Tor O1 strains isolated in Bangladesh in 2002 and 2008. In contrast, analysis of genomic variation of the Haitian isolates reveals a more distant relationship with circulating South American isolates. CONCLUSIONS The Haitian epidemic is probably the result of the introduction, through human activity, of a V. cholerae strain from a distant geographic source. (Funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.).


Nature Methods | 2016

Phased diploid genome assembly with single-molecule real-time sequencing

Chen-Shan Chin; Paul Peluso; Fritz J. Sedlazeck; Maria Nattestad; Gregory T Concepcion; Alicia Clum; Christopher P. Dunn; Ronan O'Malley; Rosa Figueroa-Balderas; Abraham Morales-Cruz; Grant R. Cramer; Massimo Delledonne; Chongyuan Luo; Joseph R. Ecker; Dario Cantu; David Rank; Michael C. Schatz

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


Genome Biology | 2013

Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

Daniël P. Melters; Keith Bradnam; Hugh A. Young; Natalie Telis; Michael R. May; J. Graham Ruby; Robert Sebra; Paul Peluso; John Eid; David Rank; José Fernando Garcia; Joseph L. DeRisi; T. P. L. Smith; Christian M. Tobias; Jeffrey Ross-Ibarra; Ian Korf; Simon W. L. Chan

BackgroundCentromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.ResultsOur methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.ConclusionsWhile centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.


Optics Letters | 2008

Parallel confocal detection of single molecules in real time

Paul Lundquist; Cheng F. Zhong; Peiqian Zhao; Austin B. Tomaney; Paul Peluso; John Dixon; Brad Bettman; Yves Lacroix; Deborah P. Kwo; Etienne McCullough; Mark Maxham; Kevin Hester; Paul McNitt; Donald M. Grey; Carlos Henriquez; Mathieu Foquet; Stephen Turner; Denis Zaccarin

The confocal detection principle is extended to a highly parallel optical system that continuously analyzes thousands of concurrent sample locations. This is achieved through the use of a holographic laser illumination multiplexer combined with a confocal pinhole array before a prism dispersive element used to provide spectroscopic information from each confocal volume. The system is demonstrated to detect and identify single fluorescent molecules from each of several thousand independent confocal volumes in real time.


Nature Biotechnology | 2012

A hybrid approach for the automated finishing of bacterial genomes

Ali Bashir; Aaron Klammer; William P. Robins; Chen Shan Chin; Dale Webster; Ellen E. Paxinos; David Hsu; Meredith Ashby; Susana Wang; Paul Peluso; Robert Sebra; Jon Sorenson; James Bullard; Jackie Yen; Marie Valdovino; Emilia Mollova; Khai Luong; Steven Lin; Brianna Lamay; Amruta Joshi; Lori A. Rowe; Michael Frace; Cheryl L. Tarr; Maryann Turnsek; Brigid M. Davis; Andrew Kasarskis; John J. Mekalanos; Matthew K. Waldor; Eric E. Schadt

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.


Nucleosides, Nucleotides & Nucleic Acids | 2008

Long, Processive Enzymatic DNA Synthesis Using 100% Dye-Labeled Terminal Phosphate-Linked Nucleotides

Jonas Korlach; Arek Bibillo; Jeffrey Wegener; Paul Peluso; Thang Pham; Insil Park; Sonya Clark; Geoff Otto; Stephen Turner

We demonstrate the efficient synthesis of DNA with complete replacement of the four deoxyribonucleoside triphosphate (dNTP) substrates with nucleotides carrying fluorescent labels. A different, spectrally separable fluorescent dye suitable for single molecule fluorescence detection was conjugated to each of the four dNTPs via linkage to the terminal phosphate. Using these modified nucleotides, DNA synthesis by φ29 DNA polymerase was observed to be processive for products thousands of bases in length, with labeled nucleotide affinities and DNA polymerization rates approaching unmodified dNTP levels. Results presented here show the compatibility of these nucleotides for single-molecule, real-time DNA sequencing applications.


Nature | 2017

Improved maize reference genome with single-molecule technologies

Yinping Jiao; Paul Peluso; Jinghua Shi; Tiffany Y. Liang; Michelle C. Stitzer; Bo Wang; Michael S. Campbell; Joshua C. Stein; Xuehong Wei; Chen Shan Chin; Katherine Guill; Michael Regulski; Sunita Kumari; Andrew Olson; Jonathan I. Gent; Kevin L. Schneider; Thomas K. Wolfgruber; Michael R. May; Nathan M. Springer; Eric Antoniou; W. Richard McCombie; Gernot G. Presting; Michael D. McMullen; Jeffrey Ross-Ibarra; R. Kelly Dawe; Alex Hastie; David Rank; Doreen Ware

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


Scientific Data | 2014

Long-read, whole-genome shotgun sequence data for five model organisms.

Kristi Kim; Paul Peluso; Primo Babayan; P. Jane Yeadon; Charles Yu; William W. Fisher; Chen-Shan Chin; Nicole A Rapicavoli; David Rank; Joachim J. Li; David E. A. Catcheside; Susan E. Celniker; Adam M. Phillippy; Casey M. Bergman; Jane M Landolin

Single molecule, real-time (SMRT) sequencing from Pacific Biosciences is increasingly used in many areas of biological research including de novo genome assembly, structural-variant identification, haplotype phasing, mRNA isoform discovery, and base-modification analyses. High-quality, public datasets of SMRT sequences can spur development of analytic tools that can accommodate unique characteristics of SMRT data (long read lengths, lack of GC or amplification bias, and a random error profile leading to high consensus accuracy). In this paper, we describe eight high-coverage SMRT sequence datasets from five organisms (Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, Arabidopsis thaliana, and Drosophila melanogaster) that have been publicly released to the general scientific community (NCBI Sequence Read Archive ID SRP040522). Data were generated using two sequencing chemistries (P4C2 and P5C3) on the PacBio RS II instrument. The datasets reported here can be used without restriction by the research community to generate whole-genome assemblies, test new algorithms, investigate genome structure and evolution, and identify base modifications in some of the most widely-studied model systems in biological research.

Collaboration


Dive into the Paul Peluso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge