Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul R. Graves is active.

Publication


Featured researches published by Paul R. Graves.


Biochemical Journal | 2008

Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies

Yan Zeng; Heidi Sankala; Xiaoxiao Zhang; Paul R. Graves

Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.


Seminars in Radiation Oncology | 2010

Radiation Pulmonary Toxicity: From Mechanisms to Management

Paul R. Graves; Farzan Siddiqui; Mitchell S. Anscher; Benjamin Movsas

The goal of radiation therapy is to reduce or eliminate tumor burden while sparing normal tissues from long-term injury. Thoracic radiation presents a unique challenge because of the inherent sensitivity of normal lung tissue to radiation. Damage to normal lung tissue presents a major obstacle in the treatment of individuals. To overcome this problem, a number of strategies are being used, including the modulation of dose volume, the use of image-guided radiotherapy, and the use of agents designed to reduce lung injury from radiation. Herein we discuss our current knowledge of the molecular and cellular events that occur after radiation therapy, the clinical manifestations of radiation-induced lung injury, current strategies to minimize lung injury, and recent experimental methods to reduce lung injury and their potential for translation into the clinic.


Genomics, Proteomics & Bioinformatics | 2012

Biogenesis of Mammalian MicroRNAs: A Global View

Paul R. Graves; Yan Zeng

MicroRNAs (miRNAs) are approximately 22-nucleotide-long non-coding RNAs that are important regulators of gene expression in eukaryotes. miRNAs are first transcribed as long primary transcripts, which then undergo a series of processing steps to produce the single-stranded mature miRNAs. This article reviews our current knowledge of the mechanism and regulation of mammalian miRNA expression and points out areas of research that may enhance our understanding of how the specificity and efficiency of miRNA production is controlled in vivo.


Biochemistry | 2010

Nitration of the Tumor Suppressor Protein p53 at Tyrosine 327 Promotes p53 Oligomerization and Activation

Vasily A. Yakovlev; Alexander S. Bayden; Paul R. Graves; Glen E. Kellogg; Ross B. Mikkelsen

Previous studies demonstrate that nitric oxide (NO) promotes p53 transcriptional activity by a classical DNA damage responsive mechanism involving activation of ATM/ATR and phosphorylation of p53. These studies intentionally used high doses of NO donors to achieve the maximum DNA damage. However, lower concentrations of NO donors also stimulate rapid and unequivocal nuclear retention of p53 but apparently do not require ATM/ATR-dependent p53 phosphorylation or total p53 protein accumulation. To identify possible mechanisms for p53 activation at low NO levels, the role of Tyr nitration in p53 activation was evaluated. Low concentrations of the NO donor, DETA NONOate (<200 microM), exclusively nitrate Tyr327 within the tetramerization domain promoting p53 oligomerization, nuclear accumulation, and increased DNA-binding activity without p53 Ser15 phosphorylation. Molecular modeling indicates that nitration of one Tyr327 stabilizes the dimer by about 2.67 kcal mol(-1). Significant quantitative and qualitative differences in the patterns of p53-target gene modulation by low (50 microM), non-DNA-damaging and high (500 microM), DNA-damaging NO donor concentrations were shown. These results demonstrate a new posttranslational mechanism for modulating p53 transcriptional activity responsive to low NO concentrations and independent of DNA damage signaling.


Journal of Biological Chemistry | 2007

Regulation of Human Cytidine Triphosphate Synthetase 1 by Glycogen Synthase Kinase 3

Matthew J. Higgins; Paul R. Graves; Lee M. Graves

Cytidine triphosphate synthetase (CTPS) catalyzes the rate-limiting step in the de novo synthesis of CTP, and both the yeast and human enzymes have been reported to be regulated by protein kinase A or protein kinase C phosphorylation. Here, we provide evidence that stimulation or inhibition of protein kinase A and protein kinase C does not alter the phosphorylation of endogenous human CTPS1 in human embryonic kidney 293 cells under the conditions tested. Unexpectedly, we found that low serum conditions increased phosphorylation of endogenous CTPS1 and this phosphorylation was inhibited by the glycogen synthase kinase 3 (GSK3) inhibitor indirubin-3′-monoxime and GSK3β short interfering RNAs, demonstrating the involvement of GSK3 in phosphorylation of endogenous human CTPS1. Separating tryptic peptides from [32P]orthophosphate-labeled cells and analyzing the phosphopeptides by mass spectrometry identified Ser-574 and Ser-575 as phosphorylated residues. Mutation of Ser-571 demonstrated that Ser-571 was the major site phosphorylated by GSK3 in intact human embryonic kidney 293 cells by GSK3 in vitro. Furthermore, mutation of Ser-575 prevented the phosphorylation of Ser-571, suggesting that phosphorylation of Ser-575 was necessary for priming the GSK3 phosphorylation of Ser-571. Low serum was found to decrease CTPS1 activity, and incubation with the GSK3 inhibitor indirubin-3′-monoxime protected against this decrease in activity. Incubation with an alkaline phosphatase increased CTPS1 activity in a time-dependent manner, demonstrating that phosphorylation inhibits CTPS1 activity. This is the first study to investigate the phosphorylation and regulation of human CTPS1 in human cells and suggests that GSK3 is a novel regulator of CTPS activity.


Free Radical Biology and Medicine | 2011

Factors influencing protein tyrosine nitration--structure-based predictive models.

Alexander S. Bayden; Vasily A. Yakovlev; Paul R. Graves; Ross B. Mikkelsen; Glen E. Kellogg

Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives).


Archives of Biochemistry and Biophysics | 2011

Upregulation of the mitochondrial transport protein, Tim50, by mutant p53 contributes to cell growth and chemoresistance.

Heidi Sankala; Catherine Vaughan; Jing Wang; Sumitra Deb; Paul R. Graves

The p53 gene is one of the most frequently mutated genes in human cancer. Some p53 mutations impart additional functions that promote oncogenesis. To investigate how these p53 mutants function, a proteomic analysis was performed. The protein, translocator of the inner mitochondrial membrane 50 (Tim50), was upregulated in a non-small cell lung carcinoma cell line (H1299) that expressed the p53 mutants R175H and R273H compared to cells lacking p53. Tim50 was also elevated in the breast cancer cell lines MDA-MB-468 and SK-BR-3, that endogenously express the p53 mutants R175H and R273H, respectively, compared to MCF-10A. The p53 mutants R175H and R273H, but not WT p53, upregulated the expression of a Tim50 promoter construct and chromatin immunoprecipitation (ChIP) analysis indicated increased histone acetylation and increased interaction of the transcription factors Ets-1, CREB and CREB-binding protein (CBP) with the Tim50 promoter in the presence of mutant p53. Finally, reduction of Tim50 expression reduced the growth rate and chemoresistance of cells harboring mutant p53 but had no effect upon cells lacking p53. Taken together, these findings identify the Tim50 gene as a transcriptional target of mutant p53 and suggest a novel mechanism by which p53 mutants enhance cell growth and chemoresistance.


Molecular Cancer Research | 2015

The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression

Christopher S. Rabender; Asim Alam; Gobalakrishnan Sundaresan; Robert J. Cardnell; Vasily A. Yakovlev; Nitai D. Mukhopadhyay; Paul R. Graves; Jamal Zweit; Ross B. Mikkelsen

Here, evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast with normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on high-performance liquid chromatography analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin:dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid, and head and neck tumors compared with normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling, including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression, and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by a clonogenic assay, Ki67 staining, and 2[18F]fluoro-2-deoxy-d-glucose–deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and, as a consequence, NOS activity generates more peroxynitrite and superoxide anion than nitric oxide, resulting in important tumor growth–promoting and antiapoptotic signaling properties. Implications: The synthetic BH4, Kuvan, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction, suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth. Mol Cancer Res; 13(6); 1034–43. ©2015 AACR.


Biochimica et Biophysica Acta | 2009

Stable Argonaute2 overexpression differentially regulates microRNA production.

Xiaoxiao Zhang; Paul R. Graves; Yan Zeng

microRNAs are a class of small RNA molecules that associate with Argonaute proteins to regulate gene expression. Argonaute proteins not only mediate the functions of microRNAs, but also play an essential role in the biogenesis of microRNAs. Here, we report that stable, long-term overexpression of Argonaute2, an Argonaute isoform, induces the production of a number of microRNAs, such as the let-7 family of microRNAs, in 293T cells. On the other hand, the expression of many microRNAs is insensitive to elevated Argonaute levels, and microRNAs in the miR-17-92 and homologous clusters are even down-regulated. The down-regulation may result from the let-7-mediated inhibition of the expression of Myc, which positively controls the transcription of the microRNAs clusters. Our data suggest that human cells have a mechanism for microRNA homeostasis, and that overexpression of a general microRNA processing factor can differentially regulate the expression of specific microRNAs.


International Journal of Radiation Oncology Biology Physics | 2010

Proteomic Analysis of Radiation-Induced Changes in Rat Lung: Modulation by the Superoxide Dismutase Mimetic MnTE-2-PyP5+

Vasily A. Yakovlev; Christopher S. Rabender; Heidi Sankala; Ben Gauter-Fleckenstein; Katharina Fleckenstein; Ines Batinic-Haberle; Isabel L. Jackson; Zeljko Vujaskovic; Mitchell S. Anscher; Ross B. Mikkelsen; Paul R. Graves

PURPOSE To identify temporal changes in protein expression in the irradiated rat lung and generate putative mechanisms underlying the radioprotective effect of the manganese superoxide dismutase mimetic MnTE-2-PyP(5+). METHODS AND MATERIALS Female Fischer 344 rats were irradiated to the right hemithorax with a single dose of 28 Gy and killed from day 1 to 20 weeks after irradiation. Proteomic profiling was performed to identify proteins that underwent significant changes in abundance. Some irradiated rats were administered MnTE-2-PyP(5+) and changes in protein expression and phosphorylation determined at 6 weeks after irradiation. RESULTS Radiation induced a biphasic stress response in the lung, as shown by the induction of heme oxygenase 1 at 1-3 days and at 6-8 weeks after irradiation. At 6-8 weeks after irradiation, the down-regulation of proteins involved in cytoskeletal architecture (filamin A and talin), antioxidant defense (biliverdin reductase and peroxiredoxin II), and cell signaling (β-catenin, annexin II, and Rho-guanosine diphosphate dissociation inhibitor) was observed. Treatment with MnTE-2-PyP(5+) partially prevented the apparent degradation of filamin and talin, reduced the level of cleaved caspases 3 and 9, and promoted Akt phosphorylation as well as β-catenin expression. CONCLUSION A significant down-regulation of proteins and an increase in protein markers of apoptosis were observed at the onset of lung injury in the irradiated rat lung. Treatment with MnTE-2-PyP(5+), which has been demonstrated to reduce lung injury from radiation, reduced apparent protein degradation and apoptosis indicators, suggesting that preservation of lung structural integrity and prevention of cell loss may underlie the radioprotective effect of this compound.

Collaboration


Dive into the Paul R. Graves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vasily A. Yakovlev

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Heidi Sankala

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Lee M. Graves

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Higgins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yan Zeng

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher S. Rabender

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

David A. Gewirtz

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Glen E. Kellogg

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge