Paul R. Lintott
University of Stirling
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul R. Lintott.
Wildlife Research | 2013
Paul R. Lintott; Elisa Fuentes-Montemayor; Dave Goulson; Kirsty J. Park
Abstract Context. Determining the biodiversity of an area is essential for making targeted conservation decisions. Undertaking surveys to confirm species presence or to estimate population sizes can be difficult, particularly for elusive species. Bats are able to detect and avoid traps, making it difficult to quantify abundance. Although acoustic surveys using bat detectors are often used as a surrogate for relative abundance, the implicit assumption that there is a positive correlation between activity levels and abundance is rarely tested. Aims. We assessed the effectiveness of surveying techniques (i.e. trapping and acoustic monitoring) for detecting species presence and tested the strength of collinearity among methods. In addition, we tested whether the use of an acoustic lure (a bat-call synthesiser) increased bat-capture rate and therefore species detectability. Methods. Surveying was carried out over 3 years in central Scotland (UK), in 68 woodlands within predominantly agricultural or urban landscapes. Key results. There was a significant positive relationship between bat activity recorded on ultrasonic detectors and the relative abundance of Pipistrellus pygmaeus and P. pipistrellus, but not those in the genus Myotis. In general, acoustic monitoring was more effective than trapping at determining species presence; however, to ensure rarer or quiet species are recorded, a complementary approach is required. Broadcasting four different types of echolocation call resulted in a 2–12-fold increase in trapping success across four species of insectivorous bat found in the study region. Whereas lure effectiveness remained unchanged for female P. pygmaeus over time, there was a marked increase in the number of males captured using the lure throughout the summer (May to September). Conclusions. In the present study, we have demonstrated a variety of ways to increase surveying efficiency, which can maximise the knowledge of diversity in an area, minimise wildlife disturbance, and enhance surveying effectiveness. Implications. Increasing surveying efficiency can improve the accuracy of targeted conservation decisions.
PLOS ONE | 2015
Paul R. Lintott; Nils Bunnefeld; Jeroen Minderman; Elisa Fuentes-Montemayor; Rebekah J. Mayhew; Lena Olley; Kirsty J. Park
Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.
Current Biology | 2016
Paul R. Lintott; Suzanne M. Richardson; David J. Hosken; Sophie A. Fensome; Fiona Mathews
Demand for renewable energy is rising exponentially. While this has benefits in reducing greenhouse gas emissions, there may be costs to biodiversity [1]. Environmental Impact Assessments (EIAs) are the main tool used across the world to predict the overall positive and negative effects of renewable energy developments before planning consent is given, and the Ecological Impact Assessments (EcIAs) within them assess their species-specific effects. Given that EIAs are undertaken globally, are extremely expensive, and are enshrined in legislation, their place in evidence-based decision making deserves evaluation. Here we assess how well EIAs of wind-farm developments protect bats. We found they do not predict the risks to bats accurately, and even in those cases where high risk was correctly identified, the mitigation deployed did not avert the risk. Given that the primary purpose of an EIA is to make planning decisions evidence-based, our results indicate that EIA mitigation strategies used to date have been ineffective in protecting bats. In the future, greater emphasis should be placed on assessing the actual impacts post-construction and on developing effective mitigation strategies.
Biodiversity and Conservation | 2014
Paul R. Lintott; Nils Bunnefeld; Elisa Fuentes-Montemayor; Jeroen Minderman; Lorna M. Blackmore; Dave Goulson; Kirsty J. Park
Urban expansion threatens global biodiversity through the destruction of natural and semi-natural habitats and increased levels of disturbance. Whilst woodlands in urban areas may reduce the impact of urbanisation on biodiversity, they are often subject to under or over-management and consist of small, fragmented patches which may be isolated. Effective management strategies for urban woodland require an understanding of the ecology and habitat requirements of all relevant taxa. Yet, little is known of how invertebrate, and in particular moth, assemblages utilise urban woodland despite being commonly found within the urban landscape. Here we show that the abundance, species richness, and species diversity of moth assemblages found within urban woodlands are determined by woodland vegetation character, patch configuration and the surrounding landscape. In general, mature broadleaved woodlands supported the highest abundance and diversity of moths. Large compact woodlands with proportionally less edge exposed to the surrounding matrix were associated with higher moth abundance than small complex woodlands. Woodland vegetation characteristics were more important than the surrounding landscape, suggesting that management at a local scale to ensure provision of good quality habitat may be relatively more important for moth populations than improving habitat connectivity across the urban matrix. Our results show that the planting of broadleaved woodlands, retaining mature trees and minimising woodland fragmentation will be beneficial for moth assemblages.
Ecology and Evolution | 2016
Paul R. Lintott; Nils Bunnefeld; Philip Briggs; Clara Gajas Roig; Kirsty J. Park
Abstract Urbanization is a key global driver in the modification of land use and has been linked to population declines even in widespread and relatively common species. Cities comprise a complex assortment of habitat types yet we know relatively little about the effects of their composition and spatial configuration on species distribution. Although many bat species exploit human resources, the majority of species are negatively impacted by urbanization. Here, we use data from the National Bat Monitoring Programme, a long‐running citizen science scheme, to assess how two cryptic European bat species respond to the urban landscape. A total of 124 × 1 km2 sites throughout Britain were surveyed. The landscape surrounding each site was mapped and classified into discrete biotope types (e.g., woodland). Generalized linear models were used to assess differences in the response to the urban environment between the two species, and which landscape factors were associated with the distributions of P. pipistrellus and P. pygmaeus. The relative prevalence of P. pygmaeus compared to P. pipistrellus was greater in urban landscapes with a higher density of rivers and lakes, whereas P. pipistrellus was frequently detected in landscapes comprising a high proportion of green space (e.g., parklands). Although P. pipistrellus is thought to be well adapted to the urban landscape, we found a strong negative response to urbanization at a relatively local scale (1 km), whilst P. pygmaeus was detected more regularly in wooded urban landscapes containing freshwater. These results show differential habitat use at a landscape scale of two morphologically similar species, indicating that cryptic species may respond differently to anthropogenic disturbance. Even species considered relatively common and well adapted to the urban landscape may respond negatively to the built environment highlighting the future challenges involved in maintaining biodiversity within an increasingly urbanized world.
Biodiversity and Conservation | 2018
Paul R. Lintott; Fiona Mathews
Environmental impact assessments (EIAs) are used globally as the evidence-base for planning decisions, yet their efficacy is uncertain. Given that EIAs are extremely expensive and are enshrined in legislation, their place in evidence-based decision making deserves evaluation. The mean is the most commonly used summary statistic in ecological assessments, yet it is unlikely to be a good summary where the distribution of data is skewed; and its use without any indication of variability can be highly misleading. Here, using bats as an example, we show that EIAs frequently summarise these data using the mean or fail to define the term ‘average’. This can lead to the systematic misinterpretation of evidence which has serious implications for assessing risk. There is therefore a pressing need for guidance to specify data processing techniques so that planning decisions are made on a firm evidence-base. By ensuring that data processing is systematic and transparent it will result in mitigation decisions and conservation strategies that are cost-effective and proportionate to the predicted degree of risk.
Ecology and Evolution | 2018
Paul R. Lintott; S Davison; J van Breda; L Kubasiewicz; D Dowse; J Daisley; E Haddy; Fiona Mathews
Abstract Acoustic surveys of bats are one of the techniques most commonly used by ecological practitioners. The results are used in Ecological Impact Assessments to assess the likely impacts of future developments on species that are widely protected in law, and to monitor developments’ postconstruction. However, there is no standardized methodology for analyzing or interpreting these data, which can make the assessment of the ecological value of a site very subjective. Comparisons of sites and projects are therefore difficult for ecologists and decision‐makers, for example, when trying to identify the best location for a new road based on relative bat activity levels along alternative routes. Here, we present a new web‐based, data‐driven tool, Ecobat, which addresses the need for a more robust way of interpreting ecological data. Ecobat offers users an easy, standardized, and objective method for analyzing bat activity data. It allows ecological practitioners to compare bat activity data at regional and national scales and to generate a numerical indicator of the relative importance of a nights worth of bat activity. The tool is free and open‐source; because the underlying algorithms are already developed, it could easily be expanded to new geographical regions and species. Data donation is required to ensure the robustness of the analyses; we use a positive feedback mechanism to encourage ecological practitioners to share data by providing in return high quality, contextualized data analysis, and graphical visualizations for direct use in ecological reports.
Royal Society Open Science | 2014
Paul R. Lintott; Nils Bunnefeld; Elisa Fuentes-Montemayor; Jeroen Minderman; Rebekah J. Mayhew; Lena Olley; Kirsty J. Park
Biological Conservation | 2015
Paul R. Lintott; Nils Bunnefeld; Kirsty J. Park
Biological Conservation | 2017
Lucinda Kirkpatrick; Sarah J. Maher; Zeltia Lopez; Paul R. Lintott; Sallie Bailey; Daisy H. Dent; Kirsty J. Park