Paul Ramage
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Ramage.
ChemMedChem | 2006
Jean-Michel Rondeau; Francis Bitsch; Emmanuelle Bourgier; Martin Geiser; René Hemmig; Markus Kroemer; Sylvie Lehmann; Paul Ramage; Sebastien Rieffel; André Strauss; Jonathan Green; Wolfgang Jahnke
To understand the structural basis for bisphosphonate therapy of bone diseases, we solved the crystal structures of human farnesyl pyrophosphate synthase (FPPS) in its unliganded state, in complex with the nitrogen‐containing bisphosphonate (N‐BP) drugs zoledronate, pamidronate, alendronate, and ibandronate, and in the ternary complex with zoledronate and the substrate isopentenyl pyrophosphate (IPP). By revealing three structural snapshots of the enzyme catalytic cycle, each associated with a distinct conformational state, and details about the interactions with N‐BPs, these structures provide a novel understanding of the mechanism of FPPS catalysis and inhibition. In particular, the accumulating substrate, IPP, was found to bind to and stabilize the FPPS–N‐BP complexes rather than to compete with and displace the N‐BP inhibitor. Stabilization of the FPPS–N‐BP complex through IPP binding is supported by differential scanning calorimetry analyses of a set of representative N‐BPs. Among other factors such as high binding affinity for bone mineral, this particular mode of FPPS inhibition contributes to the exceptional in vivo efficacy of N‐BP drugs. Moreover, our data form the basis for structure‐guided design of optimized N‐BPs with improved pharmacological properties.
Protein Science | 2003
Jason G. S. Ho; Anton P. J. Middelberg; Paul Ramage; Hans P. Kocher
Protein aggregation is commonly observed during protein refolding. To better understand this phenomenon, the intermolecular interactions experienced by a protein during unfolding and refolding are inferred from second virial coefficient (SVC) measurements. It is accepted that a negative SVC is indicative of protein–protein interactions that are attractive, whereas a positive SVC indicates net repulsive interactions. Lysozyme denatured and reduced in guanidinium hydrochloride exhibited a decreasing SVC as the denaturant was diluted, and the SVC approached zero at approximately 3 M GdnHCl. Further dilution of denaturant to renaturation conditions (1.25 M GdnHCl) led to a negative SVC, and significant protein aggregation was observed. The inclusion of 500 mM L‐arginine in the renaturation buffer shifted the SVC to positive and suppressed aggregation, thereby increasing refolding yield. The formation of mixed disulfides in the denatured state prior to refolding also increased protein solubility and suppressed aggregation, even without the use of L‐arginine. Again, the suppression of aggregation was shown to be caused by a shift from attractive to repulsive intermolecular interactions as reflected in a shift from a negative to a positive SVC value. To the best of our knowledge, this is the first time that SVC data have been reported for renaturation studies. We believe this technique will aid in our understanding of how certain conditions promote renaturation and increase protein solubility, thereby suppressing aggregation. SVC measurements provide a useful link, for protein folding and aggregation, between empirical observation and thermodynamics.
Journal of Biological Chemistry | 1998
Dominique Cheneval; Paul Ramage; Tania Kastelic; Terez Szelestenyi; Heinz Niggli; René Hemmig; Martin Bachmann; Andrew Roland Mackenzie
Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195–15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1β (IL-1β). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1β occurred, in the presence of nigericin (4–16 μm). No effects on the release of tumor necrosis factor-α, IL-6, or proIL-1β were seen. Addition of the irreversible interleukin-1β-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1β release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1β. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1β. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1β is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1β production might be effected.
Journal of Biological Chemistry | 2009
Joerg Kallen; Arnaud Goepfert; Anke Blechschmidt; Aude Izaac; Martin Geiser; Gisele A. Tavares; Paul Ramage; Pascal Furet; Keiichi Masuya; Joanna Lisztwan
p53 tumor suppressor activity is negatively regulated through binding to the oncogenic proteins Hdm2 and HdmX. The p53 residues Leu26, Trp23, and Phe19 are crucial to mediate these interactions. Inhibiting p53 binding to both Hdm2 and HdmX should be a promising clinical approach to reactivate p53 in the cancer setting, but previous studies have suggested that the discovery of dual Hdm2/HdmX inhibitors will be difficult. We have determined the crystal structures at 1.3 Å of the N-terminal domain of HdmX bound to two p53 peptidomimetics without and with a 6-chlorine substituent on the indole (which binds in the same subpocket as Trp23 of p53). The latter compound is the most potent peptide-based antagonist of the p53-Hdm2 interaction yet to be described. The x-ray structures revealed surprising conformational changes of the binding cleft of HdmX, including an “open conformation” of Tyr99 and unexpected “cross-talk” between the Trp and Leu pockets. Notably, the 6-chloro p53 peptidomimetic bound with high affinity to both HdmX and Hdm2 (Kd values of 36 and 7 nm, respectively). Our results suggest that the development of potent dual inhibitors for HdmX and Hdm2 should be feasible. They also reveal possible conformational states of HdmX, which should lead to a better prediction of its interactions with potential biological partners.
Journal of Molecular Biology | 2008
Jill E. Chrencik; Alexei Brooun; Hui Zhang; Irimpan I. Mathews; Greg L. Hura; Scott A. Foster; J. Jefferson P. Perry; Markus Streiff; Paul Ramage; Hans Widmer; Gary M. Bokoch; John A. Tainer; Gisbert Weckbecker; Peter Kuhn
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 A resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1s ability to contact a range of Rho GTPases using a novel protein-protein interaction network.
Protein Expression and Purification | 2009
Annette Haacke; Gabriele Fendrich; Paul Ramage; Martin Geiser
The recombinant expression of eukaryotic proteins in Escherichia coli often results in protein aggregation. Several articles report on improved solubility and increased purification yields of individual proteins upon over-expression of E. coli chaperones but this effect might potentially be protein-specific. To find out whether chaperone over-expression is a generally applicable strategy for the production of human protein kinases in E. coli, we analyzed 10 kinases, mainly as catalytic domain constructs. The kinases studied, namely c-Src, c-Abl, Hck, Lck, Igf1R, InsR, KDR, c-Met, b-Raf and Irak4, belong to the tyrosine and tyrosine kinase-like groups of kinases. Upon over-expression of the E. coli chaperones DnaK/DnaJ/GrpE and GroEL/GroES, the yields of 7 from 10 polyhistidine-tagged kinases were increased up to 5-fold after nickel-affinity purification (IMAC). Additive over-expression of the chaperones ClpB and/or trigger factor showed no further improvement. Co-purification of DnaJ and GroEL indicated incomplete kinase folding, therefore, the oligomerization state of the kinases was determined by size-exclusion chromatography. In our study, kinases behave in three different ways. Kinases where yields are not affected by E. coli chaperone over-expression e.g. c-Src elute in the monomeric fraction (category I). Although IMAC yields increase upon chaperone over-expression, InsR and b-Raf kinase are present as soluble aggregates (category II). Igf1R and c-Met kinase catalytic domains are partially complexed with E. coli chaperones upon over-expression; however, they show approximately 2-fold increased yields of monomer (category III). Together, our results suggest that the benefits of chaperone over-expression on the production of protein kinases in E. coli are indeed case-specific.
mAbs | 2015
Jean-Michel Rondeau; Paul Ramage; Mauro Zurini; Hermann Gram
Interleukin-1β (IL-1β) plays a key role in autoinflammatory diseases, such as systemic juvenile idiopathic arthritis (sJIA) or cryopyrin-associated periodic syndrome (CAPS). Canakinumab, a human monoclonal anti-IL-1β antibody, was recently approved for human use under the brand name Ilaris®. Canakinumab does not cross-react with IL-1β from mouse, rat, rabbit, or macaques. The crystal structure of the canakinumab Fab bound to human IL-1β was determined in an attempt to rationalize the species specificity. The X-ray analysis reveals a complex surface epitope with an intricate network of well-ordered water molecules at the antibody-antigen interface. The canakinumab paratope is largely pre-organized, as demonstrated by the structure determination of the free Fab. Glu 64 of human IL-1β is a pivotal epitope residue explaining the exquisite species specificity of canakinumab. We identified marmoset as the only non-human primate species that carries Glu 64 in its IL-1β and demonstrates full cross-reactivity of canakinumab, thereby enabling toxicological studies in this species. As demonstrated by the X-ray structure of the complex with IL-1β, canakinumab binds IL-1β on the opposite side with respect to the IL-1RAcP binding site, and in an approximately orthogonal orientation with respect to IL-1RI. However, the antibody and IL-1RI binding sites slightly overlap and the VH region of canakinumab would sterically interfere with the D1 domain of IL-1RI, as shown by a structural overlay with the IL-1β:IL-1RI complex. Therefore, direct competition with IL-1RI for IL-1β binding is the molecular mechanism of neutralization by canakinumab, which is also confirmed by competition assays with recombinant IL-1RI and IL-1RII.
Journal of Biomolecular NMR | 1999
Claudio Dalvit; Sylvain Cottens; Paul Ramage; Ulrich Hommel
A novel variant of the 13C/15N ω2 half-filter experiment is reported for studying the hydration of an unlabelled ligand bound to a 15N and 13C uniformly labelled biological macromolecule. This doubly tuned filter experiment represents a powerful tool for obtaining resonance assignments, structure determination and hydration properties of a ligand. Its application to the binary complex formed by the inserted-domain (I-domain) of the leukocyte function-associated antigen-1 (LFA-1) with a ligand reveals the presence of H2O molecules at the binding interface.
ACS Medicinal Chemistry Letters | 2014
Aengus Mac Sweeney; Philipp Grosche; David Ellis; Keith D. Combrink; Paul Erbel; Nicola Hughes; Finton Sirockin; Samu Melkko; Anna Bernardi; Paul Ramage; Nadine Jarousse; Eva Altmann
The cysteine protease adenain is the essential protease of adenovirus and, as such, represents a promising target for the treatment of ocular and other adenoviral infections. Through a concise two-pronged hit discovery approach we identified tetrapeptide nitrile 1 and pyrimidine nitrile 2 as complementary starting points for adenain inhibition. These hits enabled the first high-resolution X-ray cocrystal structures of adenain with inhibitors bound and revealed the binding mode of 1 and 2. The screening hits were optimized by a structure-guided medicinal chemistry strategy into low nanomolar drug-like inhibitors of adenain.
Bioorganic & Medicinal Chemistry Letters | 2015
Philipp Grosche; Finton Sirockin; Aengus Mac Sweeney; Paul Ramage; Paul Erbel; Samu Melkko; Anna Bernardi; Nicola Hughes; David Ellis; Keith D. Combrink; Nadine Jarousse; Eva Altmann
Adenoviral infections are associated with a wide range of acute diseases, among which ocular viral conjunctivitis (EKC) and disseminated disease in immunocompromised patients. To date, no approved specific anti-adenoviral drug is available, but there is a growing need for an effective treatment of such infections. The adenoviral protease, adenain, plays a crucial role for the viral lifecycle and thus represents an attractive therapeutic target. Structure-guided design with the objective to depeptidize tetrapeptide nitrile 1 led to the novel chemotype 2. Optimization of scaffold 2 resulted in picomolar adenain inhibitors 3a and 3b. In addition, a complementary series of irreversible vinyl sulfone containing inhibitors were rationally designed, prepared and evaluated against adenoviral protease. High resolution X-ray co-crystal structures of representatives of each series proves the successful design of these inhibitors and provides an excellent basis for future medicinal chemistry optimization of these compounds.