Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Reeser is active.

Publication


Featured researches published by Paul Reeser.


Annual Review of Phytopathology | 2011

Phytophthora beyond agriculture.

Everett Hansen; Paul Reeser; Wendy Sutton

Little is known about indigenous Phytophthora species in natural ecosystems. Increasing evidence, however, suggests that a diverse, trophically complex Phytophthora community is important in many forests. The number of described species has steadily increased, with a dramatic spike in recent years as new species have been split from old and new species have been discovered through exploration of new habitats. Forest soil, streams, and the upper canopies of trees are now being explored for Phytophthora diversity, and a new appreciation for the ecological amplitude of the genus is emerging. Ten to twenty species are regularly identified in temperate forest surveys. Half or more of this Phytophthora diversity comes from species described since 2000. Taxa in internal transcribed spacer (ITS) Clade 6 are especially numerous in forest streams and may be saprophytic in this habitat. Three ecological assemblages of forest Phytophthora species are hypothesized: aquatic opportunists, foliar pathogens, and soilborne fine-root and canker pathogens. Aggressive invasive species are associated with all three groups.


Mycologia | 2011

Phytophthora species in forest streams in Oregon and Alaska

Paul Reeser; Wendy Sutton; Everett Hansen; Philippe Remigi; Gerry C. Adams

Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization with single strand conformational polymorphism, COX spacer sequence and ITS sequence. ITS Clade 6 species were most abundant overall, but only four species, P. gonapodyides (37% of all isolates), P. taxon Salixsoil, P. taxon Oaksoil and P. pseudosyringae, were found in all three regions. The species assemblages were similar in the two Oregon regions, but P. taxon Pgchlamydo was absent in Alaska and one new species present in Alaska was absent in Oregon streams. The number of Phytophthora propagules in Oregon streams varied by season and in SW Oregon, where sampling continued year round, P. taxon Salixsoil, P. nemorosa and P. siskiyouensis were recovered only in some seasons.


Phytopathology | 2005

A climate-based model for predicting geographic variation in swiss needle cast severity in the Oregon coast range.

Daniel K. Manter; Paul Reeser; Jeffrey K. Stone

ABSTRACT Since the early 1990s, Swiss needle cast disease caused by Phaeocryptopus gaeumannii has been increasing in Douglas-fir plantations in the Oregon Coast Range. Considerable variation in disease severity across the affected area often has been noted. We investigated the influence of site microclimate on fungal colonization as a basis for this variation with a combination of seedling inoculation and field studies. Development of P. gaeumannii ascocarps on inoculated seedlings subjected to mist, irrigation, and shading treatments was followed for 10 months. Contrary to expectations, numbers of ascocarps on foliage were negatively correlated with shade and mist and positively correlated with temperature. Numbers of ascocarps on foliage, site temperature, and leaf wetness were monitored over 5 years at nine field sites in the Oregon Coast Range. Factors most highly correlated with ascocarp abundance were winter mean daily temperature and spring cumulative leaf wetness. Predictive models for disease severity on the basis of these correlations were tested against disease and climate data measured at field sites during 2003-2004. A temperature-based disease prediction model was developed in combination with geographical information systems (GIS)-linked climate databases to estimate disease levels across a portion of the Oregon Coast Range. This model can be used for hypothesis testing and as a decision support tool for forest managers.


Plant Disease | 2009

Stream Monitoring for Detection of Phytophthora ramorum in Oregon Tanoak Forests

Wendy Sutton; Everett Hansen; Paul Reeser; Alan Kanaskie

Stream monitoring using leaf baits for early detection of Phytophthora ramorum has been an important part of the Oregon Sudden Oak Death (SOD) program since 2002. Sixty-four streams in and near the Oregon quarantine area in the southwest corner of the state were monitored in 2008. Leaves of rhododendron (Rhododendron macrophyllum) and tanoak (Lithocarpus densiflorus) were placed in mesh bags, and bags were floated in streams. Leaf baits were exchanged every 2 weeks throughout the year. Leaves were assayed by isolation on selective medium and by multiplex rDNA internal transcribed spacer polymerase chain reaction (ITS PCR). The two methods gave comparable results, but multiplex PCR was more sensitive. P. ramorum was regularly recovered at all seasons of the year from streams draining infested sites 5 years after eradication treatment. In streams with lower inoculum densities, recovery was much higher in summer than in winter. P. ramorum was isolated from streams in 23 watersheds. When P. ramorum was detected, intensive ground surveys located infected tanoaks or other host plants an average of 306 m upstream from the bait station. P. ramorum was isolated from stream baits up to 1,091 m from the probable inoculum source.


Mycologia | 2009

Phytophthora rosacearum and P. sansomeana, new species segregated from the Phytophthora megasperma “complex”

Everett Hansen; Wayne F. Wilcox; Paul Reeser; Wendy Sutton

Phytophthora megasperma sensu lato was a conglomeration of morphologically similar but phylogenetically unrelated species. In this paper we continue the segregation of species from the old P. megasperma complex, formally naming two previously recognized isolate groups. Isolates recovered from rosaceous fruit trees (especially apple and cherry) are in ITS clade 6, related to but distinct from P. megasperma sensu strictu. They are named here Phytophthora rosacearum. They have been referred to previously as the “AC” or “high temperature small oospore” group of P. megasperma. A second group of isolates, earlier called “soybean race non-classifiable”, recovered from soybeans in Indiana and other Midwestern states, are morphologically similar to P. megasperma sensu strictu but unrelated to that species, falling in ITS clade 8. They are named here P. sansomeana. Isolates recovered from Douglas-fir seedlings in nurseries in the Pacific Northwest and various weedy hosts in New York State, referred to in earlier work as “P. megasperma DF1”, appear to be conspecific with the soybean isolates, although they include certain ITS DNA polymorphisms. Both new species are supported by a combination of new and previously published morphological, growth and molecular data.


Mycologia | 2015

The Phytophthora species assemblage and diversity in riparian alder ecosystems of western Oregon, USA.

Laura Sims; Wendy Sutton; Paul Reeser; Everett Hansen

Phytophthora species were systematically sampled, isolated, identified and compared for presence in streams, soil and roots of alder (Alnus species) dominated riparian ecosystems in western Oregon. We describe the species assemblage and evaluate Phytophthora diversity associated with alder. We recovered 1250 isolates of 20 Phytophthora species. Only three species were recovered from all substrates (streams, soil, alder roots): P. gonapodyides, the informally described “P. taxon Pgchlamydo”, and P. siskiyouensis. P. alni ssp. uniformis along with five other species not previously recovered in Oregon forests are included in the assemblage: P.citricola s.l., P. gregata, P. gallica, P. nicotianae and P. parsiana. Phytophthora species diversity was greatest in downstream riparian locations. There was no significant difference in species diversity comparing soil and unwashed roots (the rhizosphere) to stream water. There was a difference between the predominating species from the rhizosphere compared to stream water. The most numerous species was the informally described “P. taxon Oaksoil”, which was mainly recovered from, and most predominant in, stream water. The most common species from riparian forest soils and alder root systems was P. gonapodyides.


Mycologia | 2012

Phytophthora borealis and Phytophthora riparia, new species in Phytophthora ITS Clade 6

Everett Hansen; Paul Reeser; Wendy Sutton

Phytophthora borealis and Phytophthora riparia, identified in recent Phytophthora surveys of forest streams in Oregon, California and Alaska, are described as new species in Phytophthora ITS Clade 6. They are similar in growth form and morphology to P. gonapodyides and are predominately sterile. They present unique DNA sequences, however, and differ in temperature/growth relations and geographic distribution.


Plant Disease | 2016

First Report of the EU1 Clonal Lineage of Phytophthora ramorum on Tanoak in an Oregon Forest

Niklaus J. Grünwald; Meredith M. Larsen; Zhian N. Kamvar; Paul Reeser; Alan Kanaskie; J. Laine; R. Wiese

Initially reported in California as the causal agent of sudden oak death (SOD), efforts to limit spread of Phytophthora ramorum in Oregon natural forests have concentrated on quarantine regulations and eradication of the pathogen from infested areas. P. ramorum has four clonal lineages: NA1; NA2; EU1; and EU2 (Grünwald et al. 2012; Van Poucke et al. 2012). Forest infestations in Oregon have been limited to the NA1 clonal lineage, whereas EU1, NA1, and NA2 clonal lineages have all been found in U.S. nurseries (Kamvar et al. 2015; Prospero et al. 2007). In February 2015, in response to an aerial survey, P. ramorum was isolated from a dying Notholithocarpus densiflorus tree in the South Fork Pistol River drainage of Curry Co., Oregon. The isolated strain was identified as P. ramorum based on presence of chlamydospores, characteristic hyphae, and sporangial morphology. Microsatellite genotyping at 14 loci (Vercauteren et al. 2011) and comparison with reference cultures revealed that these isolates belonged to the EU1 clonal lineage. Subsequently, five more isolates were obtained from the original tree stump and the EU1 lineage was confirmed. Microsatellite alleles of the forest EU1 isolates were nearly identical to EU1 isolates collected in 2012 from a nearby nursery during routine P. ramorum nursery monitoring, except for one allele at locus PrMS145a. Interestingly, several isolates differed at locus ILVOPrMS131a within both the 2015 forest and the 2012 nursery findings with identical allele frequencies in each population for this locus. These data provide inconclusive support for the introduction of EU1 into Curry Co. from the 2012 populations found in nurseries, given that no direct match was found probably owing to the paucity of EU1 samples from nurseries. These results provide further evidence that multiple distinct P. Quick Links Add to favorites


Plant Disease | 2015

First Report of Phytophthora pluvialis Causing Needle Loss and Shoot Dieback on Douglas-fir in Oregon and New Zealand

Everett Hansen; Paul Reeser; Wendy Sutton; J. Gardner; N. Williams

This is the publisher’s final pdf. The published news item is copyrighted by American Phytopathological Society and can be found at: http://apsjournals.apsnet.org/loi/pdis


Plant Disease | 2015

Pathogenicity of Phytophthora lateralis Lineages on Different Selections of Chamaecyparis lawsoniana

C. Robin; Clive M. Brasier; Paul Reeser; Wendy Sutton; A. Vannini; A. M. Vettraino; Everett Hansen

Phytophthora lateralis, the cause of Chamaecyparis lawsoniana root disease, was introduced in North America about 1920, and has since killed trees along roads and streams throughout the trees range. Recent results suggest an Asian origin for this oomycete and four genetic lineages were identified. This raised questions for the genetic exapted resistance demonstrated in 1989 within the wild population of C. lawsoniana but with only one P. lateralis lineage. The main goal of the present research was to test the durability of the demonstrated resistance and to compare the pathogenicity of isolates representing the four lineages. No breakdown of resistance was observed in five separate tests using different inoculation techniques, resistant and susceptible C. lawsoniana trees, and seedling families. Differences in mortality and lesion length were observed between the lineages. The higher aggressiveness of isolates of the TWJ and PNW lineages and the lower aggressiveness of the TWK lineage are discussed in view of the hypotheses on the history of spread and evolutionary history of the P. lateralis lineages.

Collaboration


Dive into the Paul Reeser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy Sutton

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Alan Kanaskie

Oregon Department of Forestry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Sims

University of California

View shared research outputs
Top Co-Authors

Avatar

Niklaus J. Grünwald

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Navarro

Oregon Department of Forestry

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge