Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy Sutton is active.

Publication


Featured researches published by Wendy Sutton.


Plant Disease | 2005

Susceptibility of Oregon Forest Trees and Shrubs to Phytophthora ramorum: A Comparison of Artificial Inoculation and Natural Infection

Everett Hansen; Jennifer L. Parke; Wendy Sutton

Phytophthora ramorum is an invasive pathogen in some mixed-hardwood forests in California and southwestern Oregon, where it causes sudden oak death (SOD) on some members of Fagaceae, ramorum shoot dieback on some members of Ericaceae and conifers, and ramorum leaf blight on diverse hosts. We compared symptoms of P. ramorum infection resulting from four different artificial inoculation techniques with the symptoms of natural infection on 49 western forest trees and shrubs; 80% proved susceptible to one degree or another. No single inoculation method predicted the full range of symptoms observed in the field, but whole plant dip came closest. Detached-leaf-dip inoculation provided a rapid assay and permitted a reasonable assessment of susceptibility to leaf blight. Both leaf age and inoculum dose affected detached-leaf assays. SOD and dieback hosts often developed limited leaf symptoms, although the pattern of midrib and petiole necrosis was distinctive. Stem-wound inoculation of seedlings correlated with field symptoms for several hosts. The results suggested that additional conifer species may be damaged in the field. Log inoculation provided a realistic test of susceptibility to SOD, but was cumbersome and subject to seasonal variability. Pacific rhododendron, salmonberry, cascara, and poison oak were confirmed as hosts by completing Kochs postulates. Douglas-fir was most susceptible to shoot dieback shortly after budburst, with infection occurring at the bud.


Annual Review of Phytopathology | 2011

Phytophthora beyond agriculture.

Everett Hansen; Paul Reeser; Wendy Sutton

Little is known about indigenous Phytophthora species in natural ecosystems. Increasing evidence, however, suggests that a diverse, trophically complex Phytophthora community is important in many forests. The number of described species has steadily increased, with a dramatic spike in recent years as new species have been split from old and new species have been discovered through exploration of new habitats. Forest soil, streams, and the upper canopies of trees are now being explored for Phytophthora diversity, and a new appreciation for the ecological amplitude of the genus is emerging. Ten to twenty species are regularly identified in temperate forest surveys. Half or more of this Phytophthora diversity comes from species described since 2000. Taxa in internal transcribed spacer (ITS) Clade 6 are especially numerous in forest streams and may be saprophytic in this habitat. Three ecological assemblages of forest Phytophthora species are hypothesized: aquatic opportunists, foliar pathogens, and soilborne fine-root and canker pathogens. Aggressive invasive species are associated with all three groups.


Mycologia | 2011

Phytophthora species in forest streams in Oregon and Alaska

Paul Reeser; Wendy Sutton; Everett Hansen; Philippe Remigi; Gerry C. Adams

Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization with single strand conformational polymorphism, COX spacer sequence and ITS sequence. ITS Clade 6 species were most abundant overall, but only four species, P. gonapodyides (37% of all isolates), P. taxon Salixsoil, P. taxon Oaksoil and P. pseudosyringae, were found in all three regions. The species assemblages were similar in the two Oregon regions, but P. taxon Pgchlamydo was absent in Alaska and one new species present in Alaska was absent in Oregon streams. The number of Phytophthora propagules in Oregon streams varied by season and in SW Oregon, where sampling continued year round, P. taxon Salixsoil, P. nemorosa and P. siskiyouensis were recovered only in some seasons.


Plant Disease | 2002

Sudden oak death caused by Phytophthora ramorum in Oregon.

Ellen Michaels Goheen; Everett Hansen; Alan Kanaskie; M. G. McWilliams; N. Osterbauer; Wendy Sutton

Sudden oak death, caused by Phytophthora ramorum (1,2), has been found for the first time in Oregon, killing tanoak, Lithocarpus densiflorus, trees. To our knowledge, this is the first report of the disease outside of the San Francisco to Monterey area in California, (300 km to the south). Nine areas of infestation, all within a 24-km2 area, were discovered on forest lands near Brookings, in southwest Oregon. Mortality centers ranged in size from 0.2 to 4.5 ha and included 5 to approximately 40 diseased trees. P. ramorum was isolated from stem cankers using Phytophthora-selective medium. Isolates had distinctive morphological features characteristic of P. ramorum, including abundant production of chlamydospores and caducous, semipapillate sporangia on solid media. Internal transcribed spacer (ITS) sequences of isolates of P. ramorum from Oregon were identical to ITS sequences of isolates from California (1). The pathogen also was isolated from necrotic lesions on leaves and stems of native Rhododendron macrophyllum and Vaccinium ovatum growing beneath diseased tanoaks. In July 2001, the disease was located by an aerial survey conducted cooperatively by the USDA Forest Service and Oregon Department of Forestry. All lands within 1.6 km (1 mile) of the mortality centers are subject to Oregon quarantine, which bars the transport of any host plant materials. An eradication effort is currently underway. Symptomatic plants and all known host plants within 15 to 30 m of symptomatic plants are being cut and burned in the first phase of this operation. The total treated area is approximately 16 ha. References: (1) D. M. Rizzo et al. Plant Dis. In press. (2) S. Werres et al. Mycol. Res. 105:1155, 2001.


Plant Disease | 2009

Stream Monitoring for Detection of Phytophthora ramorum in Oregon Tanoak Forests

Wendy Sutton; Everett Hansen; Paul Reeser; Alan Kanaskie

Stream monitoring using leaf baits for early detection of Phytophthora ramorum has been an important part of the Oregon Sudden Oak Death (SOD) program since 2002. Sixty-four streams in and near the Oregon quarantine area in the southwest corner of the state were monitored in 2008. Leaves of rhododendron (Rhododendron macrophyllum) and tanoak (Lithocarpus densiflorus) were placed in mesh bags, and bags were floated in streams. Leaf baits were exchanged every 2 weeks throughout the year. Leaves were assayed by isolation on selective medium and by multiplex rDNA internal transcribed spacer polymerase chain reaction (ITS PCR). The two methods gave comparable results, but multiplex PCR was more sensitive. P. ramorum was regularly recovered at all seasons of the year from streams draining infested sites 5 years after eradication treatment. In streams with lower inoculum densities, recovery was much higher in summer than in winter. P. ramorum was isolated from streams in 23 watersheds. When P. ramorum was detected, intensive ground surveys located infected tanoaks or other host plants an average of 306 m upstream from the bait station. P. ramorum was isolated from stream baits up to 1,091 m from the probable inoculum source.


Mycologia | 2009

Phytophthora rosacearum and P. sansomeana, new species segregated from the Phytophthora megasperma “complex”

Everett Hansen; Wayne F. Wilcox; Paul Reeser; Wendy Sutton

Phytophthora megasperma sensu lato was a conglomeration of morphologically similar but phylogenetically unrelated species. In this paper we continue the segregation of species from the old P. megasperma complex, formally naming two previously recognized isolate groups. Isolates recovered from rosaceous fruit trees (especially apple and cherry) are in ITS clade 6, related to but distinct from P. megasperma sensu strictu. They are named here Phytophthora rosacearum. They have been referred to previously as the “AC” or “high temperature small oospore” group of P. megasperma. A second group of isolates, earlier called “soybean race non-classifiable”, recovered from soybeans in Indiana and other Midwestern states, are morphologically similar to P. megasperma sensu strictu but unrelated to that species, falling in ITS clade 8. They are named here P. sansomeana. Isolates recovered from Douglas-fir seedlings in nurseries in the Pacific Northwest and various weedy hosts in New York State, referred to in earlier work as “P. megasperma DF1”, appear to be conspecific with the soybean isolates, although they include certain ITS DNA polymorphisms. Both new species are supported by a combination of new and previously published morphological, growth and molecular data.


Mycologia | 2015

The Phytophthora species assemblage and diversity in riparian alder ecosystems of western Oregon, USA.

Laura Sims; Wendy Sutton; Paul Reeser; Everett Hansen

Phytophthora species were systematically sampled, isolated, identified and compared for presence in streams, soil and roots of alder (Alnus species) dominated riparian ecosystems in western Oregon. We describe the species assemblage and evaluate Phytophthora diversity associated with alder. We recovered 1250 isolates of 20 Phytophthora species. Only three species were recovered from all substrates (streams, soil, alder roots): P. gonapodyides, the informally described “P. taxon Pgchlamydo”, and P. siskiyouensis. P. alni ssp. uniformis along with five other species not previously recovered in Oregon forests are included in the assemblage: P.citricola s.l., P. gregata, P. gallica, P. nicotianae and P. parsiana. Phytophthora species diversity was greatest in downstream riparian locations. There was no significant difference in species diversity comparing soil and unwashed roots (the rhizosphere) to stream water. There was a difference between the predominating species from the rhizosphere compared to stream water. The most numerous species was the informally described “P. taxon Oaksoil”, which was mainly recovered from, and most predominant in, stream water. The most common species from riparian forest soils and alder root systems was P. gonapodyides.


Mycologia | 2012

Phytophthora borealis and Phytophthora riparia, new species in Phytophthora ITS Clade 6

Everett Hansen; Paul Reeser; Wendy Sutton

Phytophthora borealis and Phytophthora riparia, identified in recent Phytophthora surveys of forest streams in Oregon, California and Alaska, are described as new species in Phytophthora ITS Clade 6. They are similar in growth form and morphology to P. gonapodyides and are predominately sterile. They present unique DNA sequences, however, and differ in temperature/growth relations and geographic distribution.


Plant Disease | 2015

First Report of Phytophthora pluvialis Causing Needle Loss and Shoot Dieback on Douglas-fir in Oregon and New Zealand

Everett Hansen; Paul Reeser; Wendy Sutton; J. Gardner; N. Williams

This is the publisher’s final pdf. The published news item is copyrighted by American Phytopathological Society and can be found at: http://apsjournals.apsnet.org/loi/pdis


Plant Disease | 2015

Pathogenicity of Phytophthora lateralis Lineages on Different Selections of Chamaecyparis lawsoniana

C. Robin; Clive M. Brasier; Paul Reeser; Wendy Sutton; A. Vannini; A. M. Vettraino; Everett Hansen

Phytophthora lateralis, the cause of Chamaecyparis lawsoniana root disease, was introduced in North America about 1920, and has since killed trees along roads and streams throughout the trees range. Recent results suggest an Asian origin for this oomycete and four genetic lineages were identified. This raised questions for the genetic exapted resistance demonstrated in 1989 within the wild population of C. lawsoniana but with only one P. lateralis lineage. The main goal of the present research was to test the durability of the demonstrated resistance and to compare the pathogenicity of isolates representing the four lineages. No breakdown of resistance was observed in five separate tests using different inoculation techniques, resistant and susceptible C. lawsoniana trees, and seedling families. Differences in mortality and lesion length were observed between the lineages. The higher aggressiveness of isolates of the TWJ and PNW lineages and the lower aggressiveness of the TWK lineage are discussed in view of the hypotheses on the history of spread and evolutionary history of the P. lateralis lineages.

Collaboration


Dive into the Wendy Sutton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Reeser

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Alan Kanaskie

Oregon Department of Forestry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Sims

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niklaus J. Grünwald

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sarah Navarro

Oregon Department of Forestry

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge