Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Steinbach is active.

Publication


Featured researches published by Paul Steinbach.


Nature Biotechnology | 2004

Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein

Nathan C. Shaner; Robert E. Campbell; Paul Steinbach; Ben N. G. Giepmans; Amy E. Palmer; Roger Y. Tsien

Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive. The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A monomeric red fluorescent protein

Robert E. Campbell; Oded Tour; Amy E. Palmer; Paul Steinbach; Geoffrey S. Baird; David A. Zacharias; Roger Y. Tsien

All coelenterate fluorescent proteins cloned to date display some form of quaternary structure, including the weak tendency of Aequorea green fluorescent protein (GFP) to dimerize, the obligate dimerization of Renilla GFP, and the obligate tetramerization of the red fluorescent protein from Discosoma (DsRed). Although the weak dimerization of Aequorea GFP has not impeded its acceptance as an indispensable tool of cell biology, the obligate tetramerization of DsRed has greatly hindered its use as a genetically encoded fusion tag. We present here the stepwise evolution of DsRed to a dimer and then either to a genetic fusion of two copies of the protein, i.e., a tandem dimer, or to a true monomer designated mRFP1 (monomeric red fluorescent protein). Each subunit interface was disrupted by insertion of arginines, which initially crippled the resulting protein, but red fluorescence could be rescued by random and directed mutagenesis totaling 17 substitutions in the dimer and 33 in mRFP1. Fusions of the gap junction protein connexin43 to mRFP1 formed fully functional junctions, whereas analogous fusions to the tetramer and dimer failed. Although mRFP1 has somewhat lower extinction coefficient, quantum yield, and photostability than DsRed, mRFP1 matures >10 times faster, so that it shows similar brightness in living cells. In addition, the excitation and emission peaks of mRFP1, 584 and 607 nm, are ≈25 nm red-shifted from DsRed, which should confer greater tissue penetration and spectral separation from autofluorescence and other fluorescent proteins.


Nature Methods | 2005

A guide to choosing fluorescent proteins

Nathan C. Shaner; Paul Steinbach; Roger Y. Tsien

The recent explosion in the diversity of available fluorescent proteins (FPs) promises a wide variety of new tools for biological imaging. With no unified standard for assessing these tools, however, a researcher is faced with difficult questions. Which FPs are best for general use? Which are the brightest? What additional factors determine which are best for a given experiment? Although in many cases, a trial-and-error approach may still be necessary in determining the answers to these questions, a unified characterization of the best available FPs provides a useful guide in narrowing down the options.


Nature Methods | 2008

Improving the photostability of bright monomeric orange and red fluorescent proteins

Nathan C. Shaner; Michael Z. Lin; Michael R. McKeown; Paul Steinbach; Kristin L. Hazelwood; Michael W. Davidson; Roger Y. Tsien

All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.


Science | 2009

Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome.

Xiaokun Shu; Antoine Royant; Michael Z. Lin; Todd A. Aguilera; Varda Lev-Ram; Paul Steinbach; Roger Y. Tsien

Infrared Vision Proteins from jellyfish and corals that fluoresce in the visible wavelength range have revolutionized optical imaging of cells. However, these wavelengths are absorbed by hemoglobin, water, and lipids and the proteins are thus not appropriate for deep-tissue imaging. Now Shu et al. (p. 804) have engineered a bacteriophytochrome from Deinococcus radiodurans that incorporates biliverdin as the chromophore, to fluoresce with excitation and emission spectra of 648 and 708 nanometers, respectively. These infrared fluorescent proteins are expressed well in mammalian cells and mice, and can be used for whole-body imaging. An engineered infrared fluorescent protein derived from an extremophile bacterium gives a strong signal in mammalian cells. A bacteriophytochrome incorporating biliverdin has been engineered to generate strong infrared fluorescence in mammalian cells and whole mice. Visibly fluorescent proteins (FPs) from jellyfish and corals have revolutionized many areas of molecular and cell biology, but the use of FPs in intact animals, such as mice, has been handicapped by poor penetration of excitation light. We now show that a bacteriophytochrome from Deinococcus radiodurans, incorporating biliverdin as the chromophore, can be engineered into monomeric, infrared-fluorescent proteins (IFPs), with excitation and emission maxima of 684 and 708 nm, respectively; extinction coefficient >90,000 M−1 cm−1; and quantum yield of 0.07. IFPs express well in mammalian cells and mice and spontaneously incorporate biliverdin, which is ubiquitous as the initial intermediate in heme catabolism but has negligible fluorescence by itself. Because their wavelengths penetrate tissue well, IFPs are suitable for whole-body imaging. The IFPs developed here provide a scaffold for further engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires

Evan W. Miller; John Y. Lin; E. Paxon Frady; Paul Steinbach; William B. Kristan; Roger Y. Tsien

Fluorescence imaging is an attractive method for monitoring neuronal activity. A key challenge for optically monitoring voltage is development of sensors that can give large and fast responses to changes in transmembrane potential. We now present fluorescent sensors that detect voltage changes in neurons by modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic molecular wire to a fluorophore. These dyes give bigger responses to voltage than electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based on hydrophobic anions or voltage-sensitive ion channels. These features enable single-trial detection of synaptic and action potentials in cultured hippocampal neurons and intact leech ganglia. Voltage-dependent PeT should be amenable to much further optimization, but the existing probes are already valuable indicators of neuronal activity.


Nature Biotechnology | 2011

Fluorescent peptides highlight peripheral nerves during surgery in mice

Michael Whitney; Jessica L. Crisp; Linda T. Nguyen; Beth Friedman; Larry A. Gross; Paul Steinbach; Roger Y. Tsien; Quyen T. Nguyen

Nerve preservation is an important goal during surgery because accidental transection or injury leads to significant morbidity, including numbness, pain, weakness or paralysis. Nerves are usually identified by their appearance and relationship to nearby structures or detected by local electrical stimulation (electromyography), but thin or buried nerves are sometimes overlooked. Here, we use phage display to select a peptide that binds preferentially to nerves. After systemic injection of a fluorescently labeled version of the peptide in mice, all peripheral nerves are clearly delineated within 2 h. Contrast between nerve and adjacent tissue is up to tenfold, and useful contrast lasts up to 8 h. No changes in behavior or activity are observed after treatment, indicating a lack of obvious toxicity. The fluorescent probe also labels nerves in human tissue samples. Fluorescence highlighting is independent of axonal integrity, suggesting that the probe could facilitate surgical repair of injured nerves and help prevent accidental transection.


Cancer Research | 2013

Real time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell penetrating peptides

Elamprakash N. Savariar; Csilla N. Felsen; Nadia Nashi; Tao Jiang; Lesley G. Ellies; Paul Steinbach; Roger Y. Tsien; Quyen T. Nguyen

Management of metastatic disease is integral to cancer treatment. Evaluation of metastases often requires surgical removal of all anatomically susceptible lymph nodes for ex vivo pathologic examination. We report a family of novel ratiometric activatable cell-penetrating peptides, which contain Cy5 as far red fluorescent donor and Cy7 as near-infrared fluorescent acceptor. Cy5 is quenched in favor of Cy7 re-emission until the intervening linker is cut by tumor-associated matrix metalloproteinases-2 and 9 (MMP2,9) or elastases. Such cleavage increases the Cy5:Cy7 emission ratio 40-fold and triggers tissue retention of the Cy5-containing fragment. This ratiometric increase provides an accelerated and quantifiable metric to identify primary tumors and metastases to liver and lymph nodes with increased sensitivity and specificity. This technique represents a significant advance over existing nonratiometric protease sensors and sentinel lymph node detection methods, which give no information about cancer invasion.


Angewandte Chemie | 2013

Ratiometric Activatable Cell-Penetrating Peptides Provide Rapid In Vivo Readout of Thrombin Activation

Michael Whitney; Elamprakash N. Savariar; Beth Friedman; Rachel A. Levin; Jessica L. Crisp; Heather L. Glasgow; Roy B. Lefkowitz; Stephen R. Adams; Paul Steinbach; Nadia Nashi; Quyen T. Nguyen; Roger Y. Tsien

In real time: thrombin activation in vivo can be imaged in real time with ratiometric activatable cell penetrating peptides (RACPPs). RACPPs are designed to combine 1) dual-emission ratioing, 2) far red to infrared wavelengths for in vivo mammalian imaging, and 3) cleavage-dependent spatial localization. The most advanced RACPP uses norleucine (Nle)-TPRSFL as a linker that increases sensitivity to thrombin by about 90-fold.


Chemistry & Biology | 2016

Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species

Stephen R. Adams; Mason R. Mackey; Ranjan Ramachandra; Sakina P. Lemieux; Paul Steinbach; Eric A. Bushong; Margaret T. Butko; Ben N. G. Giepmans; Mark H. Ellisman; Roger Y. Tsien

Electron microscopy (EM) remains the primary method for imaging cellular and tissue ultrastructure, although simultaneous localization of multiple specific molecules continues to be a challenge for EM. We present a method for obtaining multicolor EM views of multiple subcellular components. The method uses sequential, localized deposition of different lanthanides by photosensitizers, small-molecule probes, or peroxidases. Detailed view of biological structures is created by overlaying conventional electron micrographs with pseudocolor lanthanide elemental maps derived from distinctive electron energy-loss spectra of each lanthanide deposit via energy-filtered transmission electron microscopy. This results in multicolor EM images analogous to multicolor fluorescence but with the benefit of the full spatial resolution of EM. We illustrate the power of this methodology by visualizing hippocampal astrocytes to show that processes from two astrocytes can share a single synapse. We also show that polyarginine-based cell-penetrating peptides enter the cell via endocytosis, and that newly synthesized PKMζ in cultured neurons preferentially localize to the postsynaptic membrane.

Collaboration


Dive into the Paul Steinbach's collaboration.

Top Co-Authors

Avatar

Roger Y. Tsien

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Friedman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Jiang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge