Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul V. Debes is active.

Publication


Featured researches published by Paul V. Debes.


Ecological Applications | 2010

Consequences of farmed-wild hybridization across divergent wild populations and multiple traits in salmon

Dylan J. Fraser; Aimee Lee S. Houde; Paul V. Debes; Patrick T. O'Reilly; James D. Eddington; Jeffrey A. Hutchings

Theory predicts that hybrid fitness should decrease as population divergence increases. This suggests that the effects of human-induced hybridization might be adequately predicted from the known divergence among parental populations. We tested this prediction by quantifying trait differentiation between multigenerational crosses of farmed Atlantic salmon (Salmo salar) and divergent wild populations from the Northwest Atlantic; the former escape repeatedly into the wild, while the latter are severely depleted. Under common environmental conditions and at the spatiotemporal scale considered (340 km, 12 000 years of divergence), substantial cross differentiation had a largely additive genetic basis at behavioral, life history, and morphological traits. Wild backcrossing did not completely restore hybrid trait distributions to presumably more optimal wild states. Consistent with theory, the degree to which hybrids deviated in absolute terms from their parental populations increased with increasing parental divergence (i.e., the collective environmental and life history differentiation, genetic divergence, and geographic distance between parents). Nevertheless, while these differences were predictable, their implications for risk assessment were not: wild populations that were equally divergent from farmed salmon in the total amount of divergence differed in the specific traits at which this divergence occurred. Combined with ecological data on the rate of farmed escapes and wild population trends, we thus suggest that the greatest utility of hybridization data for risk assessment may be through their incorporation into demographic modeling of the short- and long-term consequences to wild population persistence. In this regard, our work demonstrates that detailed hybridization data are essential to account for life-stage-specific changes in phenotype or fitness within divergent but interrelated groups of wild populations. The approach employed here will be relevant to risk assessments in a range of wild species where hybridization with domesticated relatives is a concern, especially where the conservation status of the wild species may preclude direct fitness comparisons in the wild.


Molecular Ecology | 2012

Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two environments

Paul V. Debes; Eric Normandeau; Dylan J. Fraser; Louis Bernatchez; Jeffrey A. Hutchings

Escaped domesticated individuals can introduce disadvantageous traits into wild populations due to both adaptive differences between population ancestors and human‐induced changes during domestication. In contrast to their domesticated counterparts, some endangered wild Atlantic salmon populations encounter during their marine stage large amounts of suspended sediments, which may act as a selective agent. We used microarrays to elucidate quantitative transcriptional differences between a domesticated salmon strain, a wild population and their first‐generation hybrids during their marine life stage, to describe transcriptional responses to natural suspended sediments, and to test for adaptive genetic variation in plasticity relating to a history of natural exposure or nonexposure to suspended sediments. We identified 67 genes differing in transcription level among salmon groups. Among these genes, processes related to energy metabolism and ion homoeostasis were over‐represented, while genes contributing to immunity and actin‐/myosin‐related processes were also involved in strain differentiation. Domestic–wild hybrids exhibited intermediate transcription patterns relative to their parents for two‐thirds of all genes that differed between their parents; however, genes deviating from additivity tended to have similar levels to those expressed by the wild parent. Sediments induced increases in transcription levels of eight genes, some of which are known to contribute to external or intracellular damage mitigation. Although genetic variation in plasticity did not differ significantly between groups after correcting for multiple comparisons, two genes (metallothionein and glutathione reductase) tended to be more plastic in response to suspended sediments in wild and hybrid salmon, and merit further examination as candidate genes under natural selection.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish

Dylan J. Fraser; Paul V. Debes; Louis Bernatchez; Jeffrey A. Hutchings

Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.


Heredity | 2013

Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon

Paul V. Debes; Dylan J. Fraser; Meghan C. McBride; Jeffrey A. Hutchings

Outbreeding between segregating populations can be important from an evolutionary, conservation and economical-agricultural perspective. Whether and how outbreeding influences maternal effects in wild populations has rarely been studied, despite both the prominent maternal influence on early offspring survival and the known presence of fitness effects resulting from outbreeding in many taxa. We studied several traits during the yolk-feeding stage in multigenerational crosses between a wild and a domesticated Atlantic salmon (Salmo salar) population up to their third-generation hybrid in a common laboratory environment. Using cross-means analysis, we inferred that maternal additive outbreeding effects underlie most offspring traits but that yolk mass also underlies maternal dominant effects. As a consequence of the interplay between additive and dominant maternally controlled traits, offspring from first-generation hybrid mothers expressed an excessive proportion of residual yolk mass, relative to total mass, at the time of first feeding. Their residual yolk mass was 23–97% greater than those of other crosses and 31% more than that predicted by a purely additive model. Offspring additive, epistatic and epistatic offspring-by-maternal outbreeding effects appeared to further modify this largely maternally controlled cross-means pattern, resulting in an increase in offspring size with the percentage of domesticated alleles. Fitness implications remain elusive because of unknown phenotype-by-environment interactions. However, these results suggest how mechanistically co-adapted genetic maternal control on early offspring development can be disrupted by the effects of combining alleles from divergent populations. Complex outbreeding effects at both the maternal and offspring levels make the prediction of hybrid phenotypes difficult.


Conservation Biology | 2014

Risk Assessment of Inbreeding and Outbreeding Depression in a Captive‐Breeding Program

Njal Rollinson; Dave M. Keith; Aimee Lee S. Houde; Paul V. Debes; Meghan C. McBride; Jeffrey A. Hutchings

Captive-breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive-bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive-breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F(1) and F(2) interpopulation hybrids, backcrosses, as well as inbred and noninbred within-population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation.


Genetics | 2014

The Between-Population Genetic Architecture of Growth, Maturation, and Plasticity in Atlantic Salmon

Paul V. Debes; Dylan J. Fraser; Matthew C. Yates; Jeffrey A. Hutchings

The between-population genetic architecture for growth and maturation has not been examined in detail for many animal species despite its central importance in understanding hybrid fitness. We studied the genetic architecture of population divergence in: (i) maturation probabilities at the same age; (ii) size at age and growth, while accounting for maturity status and sex; and (iii) growth plasticity in response to environmental factors, using divergent wild and domesticated Atlantic salmon (Salmo salar). Our work examined two populations and their multigenerational hybrids in a common experimental arrangement in which salinity and quantity of suspended sediments were manipulated to mimic naturally occurring environmental variation. Average specific growth rates across environments differed among crosses, maturity groups, and cross-by-maturity groups, but a growth-rate reduction in the presence of suspended sediments was equal for all groups. Our results revealed both additive and nonadditive outbreeding effects for size at age and for growth rates that differed with life stage, as well as the presence of different sex- and size-specific maturation probabilities between populations. The major implication of our work is that estimates of the genetic architecture of growth and maturation can be biased if one does not simultaneously account for temporal changes in growth and for different maturation probabilities between populations. Namely, these correlated traits interact differently within each population and between sexes and among generations, due to nonadditive effects and a level of independence in the genetic control for traits. Our results emphasize the challenges to investigating and predicting phenotypic changes resulting from between-population outbreeding.


PLOS ONE | 2016

Striking Phenotypic Variation yet Low Genetic Differentiation in Sympatric Lake Trout (Salvelinus namaycush).

Kia Marin; Andrew Coon; Robert Spencer Carson; Paul V. Debes; Dylan J. Fraser

The study of population differentiation in the context of ecological speciation is commonly assessed using populations with obvious discreteness. Fewer studies have examined diversifying populations with occasional adaptive variation and minor reproductive isolation, so factors impeding or facilitating the progress of early stage differentiation are less understood. We detected non-random genetic structuring in lake trout (Salvelinus namaycush) inhabiting a large, pristine, postglacial lake (Mistassini Lake, Canada), with up to five discernible genetic clusters having distinctions in body shape, size, colouration and head shape. However, genetic differentiation was low (FST = 0.017) and genetic clustering was largely incongruent between several population- and individual-based clustering approaches. Genotype- and phenotype-environment associations with spatial habitat, depth and fish community structure (competitors and prey) were either inconsistent or weak. Striking morphological variation was often more continuous within than among defined genetic clusters. Low genetic differentiation was a consequence of relatively high contemporary gene flow despite large effective population sizes, not migration-drift disequilibrium. Our results suggest a highly plastic propensity for occupying multiple habitat niches in lake trout and a low cost of morphological plasticity, which may constrain the speed and extent of adaptive divergence. We discuss how factors relating to niche conservatism in this species may also influence how plasticity affects adaptive divergence, even where ample ecological opportunity apparently exists.


Marine Biology | 2011

Atlantic-Mediterranean and within-Mediterranean molecular variation in Coris julis (L. 1758) (Teleostei, Labridae)

Carmelo Fruciano; Reinhold Hanel; Paul V. Debes; Concetta Tigano; Venera Ferrito


Canadian Journal of Fisheries and Aquatic Sciences | 2014

Effects of domestication on parr maturity, growth, and vulnerability to predation in Atlantic salmon

Paul V. Debes; Jeffrey A. Hutchings


Journal of Zoological Systematics and Evolutionary Research | 2012

Genetic structure of the common impala (Aepyceros melampus melampus) in South Africa: phylogeography and implications for conservation

Patrick Schwab; Paul V. Debes; Thorsten Witt; Günther B. Hartl; San San Hmwe; Frank E. Zachos; J. Paul Grobler

Collaboration


Dive into the Paul V. Debes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo Fruciano

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge