Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Whitehead is active.

Publication


Featured researches published by Paul Whitehead.


Journal of Hydrology | 1990

Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments

Anthony Jakeman; I.G. Littlewood; Paul Whitehead

Abstract Our approach is based upon three factors: (i) the representation of total streamflow response as a linear convolution of the instantaneous unit hydrograph with rainfall excess; (ii) approximation of this representation in discrete time by a rational transfer function relationship which involves an efficient and flexible parameterisation; (iii) use of a simple refined version of the instrumental variable method of parameter estimation as the major tool to determine the number of identifiable flow components in the representation and to estimate their dynamic contributions to the instantaneous unit hydrograph. Stream hydrograph separation is undertaken by convoluting rainfall excess with the identified components of the unit hydrograph. The procedure is applied to two small upland catchments in Wales. The results demonstrate that at sampling intervals of the order of one hour, successful separation of quick and slow flow components can be achieved with short time series of rainfall and streamflow.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2009

A review of the potential impacts of climate change on surface water quality

Paul Whitehead; Robert L. Wilby; Richard W. Battarbee; Martin Kernan; Andrew J. Wade

Abstract It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.


Water Resources Research | 2011

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; L.P.H. van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Monitoring Earths terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earths terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.


Science of The Total Environment | 1998

A semi-distributed ntegrated itrogen model for multiple source assessment in tchments (INCA): Part I — model structure and process equations

Paul Whitehead; E.J Wilson; D. Butterfield

A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.


Science of The Total Environment | 2008

Flow controls on lowland river macrophytes: a review.

Paul Franklin; Michael J. Dunbar; Paul Whitehead

We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.


Science of The Total Environment | 1998

A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): Part II — application to large river basins in south Wales and eastern England

Paul Whitehead; E.J Wilson; D. Butterfield; K Seed

The integrated nitrogen in catchments (INCA) model is applied to two large river basins, the River Tywi in south Wales and the Great Ouse in eastern England. These two catchments have contrasting hydrogeology, land use and climatic regimes and provide an interesting test of the INCA model. The model is calibrated and validated against hydrological and chemical data for the rivers and a sensitivity analysis used to investigate parametric uncertainty. The annual loads estimated by the model are also compared with experimental data taken from nitrogen experiments around the world. Finally, scenario analysis is used to investigate impacts of changes in nitrogen deposition patterns and land use change in upland and lowland river systems.


Science of The Total Environment | 2000

The water quality of the River Kennet: initial observations on a lowland chalk stream impacted by sewage inputs and phosphorus remediation

Colin Neal; Helen P. Jarvie; Sharon M. Howarth; Paul Whitehead; Richard J. Williams; Margaret Neal; Martin Harrow; Heather Wickham

The water quality of seven sites on the upper reaches of the River Kennet round the market town of Marlborough is described and related to the introduction of phosphorus treatment of effluent from Marlborough sewage treatment works (STW). The River Kennet is mainly groundwater-fed from a Cretaceous chalk aquifer and hence the river water is calcium- and bicarbonate-bearing and has a relatively constant composition of many major water quality determinants. In-stream biological activity gives rise to marked diurnal fluctuations in pH (of approx. 0.8 units). Dissolved carbon dioxide and dissolved oxygen also show marked diurnal fluctuations. Dissolved carbon dioxide varies from approximately 10 to 70 times atmospheric pressure, indicating net release of carbon dioxide and the dominance of heterotrophic (respiratory) processes over autotrophic processes (photosynthesis). Much of the excess carbon dioxide is probably associated with carbon dioxide laden groundwater inputs and the relatively short within-stream residence times ensures only limited degassing to the atmosphere. Diurnal fluctuations in dissolved oxygen vary from approximately 20% to 200% saturation. For both dissolved carbon dioxide and dissolved oxygen, the amplitude of fluctuations is much lower during the winter period, when biological activity is at its lowest. The concentrations of soluble reactive phosphorus (SRP), total phosphorus (TP) and boron increase markedly just downstream of the sewage works as a result of this point source input. These concentrations slowly decline further downstream as additional groundwater inputs dilute the effluent further. The introduction of chemical treatment of sewage effluent for phosphorus reduction at Marlborough STW resulted in a marked decrease in within-river SRP and TP concentrations to levels approximately the same as those upstream of the STW. A comparison of SRP and boron concentrations reveals a reduction in in-stream SRP concentrations by approximately 75% following effluent treatment. In terms of within-river processes controlling in-stream phosphorus concentrations, previous studies have indicated that one potentially important mechanism within calcium bicarbonate bearing rivers may be related to co-precipitation of phosphorus with calcium carbonate (calcite). The present study shows that the waters are oversaturated with respect to calcium carbonate, that no equilibrium conditions exist and that phosphorus removal has led to undetectable changes in calcium carbonate oversaturation. Hence, it is concluded that the primary changes in phosphorus levels within the river is directly associated with changing point source contributions from the STW and physical dilution within the river. However (1) the results relate to only the first year of study and subsequent differences may become apparent and (2) reactions between the water column and plant and bottom sediment interfaces may be important in regulating phosphorus fluxes within the river. The results presented in this paper mark a pilot phase of a longer-term initiative and this paper provides a background setting. The paper discusses the longer-term objectives and important gaps in knowledge of the system that requires further address.


Water Resources Research | 2001

On modeling the mechanisms that control in‐stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis

A.J Wade; George M. Hornberger; Paul Whitehead; H.P Jarvie; N Flynn

The “Kennet model” is a new model of in-stream phosphorus (P) and macrophyte dynamics. Based on mass balance equations, the model represents the interactions between P and the suspended and bed sediments, the uptake of P by epiphytes and macrophytes, and the exchange of P between the water column and the pore water. The model simulates the total phosphorus (TP) and the soluble reactive phosphorus (SRP) concentrations observed in a reach of the River Kennet. Furthermore, the model simulates the generalized macrophyte growth patterns and total biomass observed in rivers throughout southern England. A general sensitivity analysis, based on Monte Carlo simulations and parameter values derived from the literature, identifies the key parameters controlling the model behavior when simulating macrophyte growth. The most important parameters are those that directly control macrophyte growth, those that define the epiphyte growth, and those that relate to the storage of P in the streambed


Science of The Total Environment | 2002

Steady state and dynamic modelling of nitrogen in the River Kennet: impacts of land use change since the 1930s

Paul Whitehead; Penny J Johnes; D. Butterfield

Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA (Integrated Nitrogen in Catchments) has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges.


Progress in Physical Geography | 2015

Climate change and water in the UK - past changes and future prospects

Glen Watts; Richard W. Battarbee; John P. Bloomfield; J. Crossman; A. Daccache; Isabelle Durance; J. Alex Elliott; Grace Garner; Jamie Hannaford; David M. Hannah; Tim Hess; Christopher R. Jackson; Alison L. Kay; Martin Kernan; Jerry W. Knox; Jonathan Mackay; Dt Monteith; S.J. Ormerod; Jemima Rance; Marianne E. Stuart; Andrew J. Wade; Steven Wade; Paul Whitehead; Robert L. Wilby

Climate change is expected to modify rainfall, temperature and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of anthropogenic climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to anthropogenic climate forcing, but over the last 50 years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and water availability. Summer flows may decrease on average, but floods may become larger and more frequent. River and lake water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms in summer, and because of higher flows in the winter. In communicating this important work, researchers should pay particular attention to explaining confidence and uncertainty clearly. Much of the relevant research is either global or highly localized: decision-makers would benefit from more studies that address water and climate change at a spatial and temporal scale appropriate for the decisions they make.

Collaboration


Dive into the Paul Whitehead's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martyn N. Futter

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Jin

State University of New York at Cortland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge