Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Attila N. Lázár is active.

Publication


Featured researches published by Attila N. Lázár.


Science of The Total Environment | 2010

An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries.

Attila N. Lázár; Dan Butterfield; Martyn N. Futter; Katri Rankinen; Marie Thouvenot-Korppoo; Nick Jarritt; Deborah Lawrence; Andrew J. Wade; Paul Whitehead

There is a need for better links between hydrology and ecology, specifically between landscapes and riverscapes to understand how processes and factors controlling the transport and storage of environmental pollution have affected or will affect the freshwater biota. Here we show how the INCA modelling framework, specifically INCA-Sed (the Integrated Catchments model for Sediments) can be used to link sediment delivery from the landscape to sediment changes in-stream. INCA-Sed is a dynamic, process-based, daily time step model. The first complete description of the equations used in the INCA-Sed software (version 1.9.11) is presented. This is followed by an application of INCA-Sed made to the River Lugg (1077 km(2)) in Wales. Excess suspended sediment can negatively affect salmonid health. The Lugg has a large and potentially threatened population of both Atlantic salmon (Salmo salar) and Brown Trout (Salmo trutta). With the exception of the extreme sediment transport processes, the model satisfactorily simulated both the hydrology and the sediment dynamics in the catchment. Model results indicate that diffuse soil loss is the most important sediment generation process in the catchment. In the River Lugg, the mean annual Guideline Standard for suspended sediment concentration, proposed by UKTAG, of 25 mg l(-1) is only slightly exceeded during the simulation period (1995-2000), indicating only minimal effect on the Atlantic salmon population. However, the daily time step simulation of INCA-Sed also allows the investigation of the critical spawning period. It shows that the sediment may have a significant negative effect on the fish population in years with high sediment runoff. It is proposed that the fine settled particles probably do not affect the salmonid egg incubation process, though suspended particles may damage the gills of fish and make the area unfavourable for spawning if the conditions do not improve.


Sustainability Science | 2016

Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh

Sylvia Szabo; Md. Sarwar Hossain; W. Neil Adger; Zoe Matthews; Sayem Ahmed; Attila N. Lázár; Sate Ahmad

As a creeping process, salinisation represents a significant long-term environmental risk in coastal and deltaic environments. Excess soil salinity may exacerbate existing risks of food insecurity in densely populated tropical deltas, which is likely to have a negative effect on human and ecological sustainability of these regions and beyond. This study focuses on the coastal regions of the Ganges–Brahmaputra delta in Bangladesh, and uses data from the 2010 Household Income and Expenditure Survey and the Soil Resource Development Institute to investigate the effect of soil salinity and wealth on household food security. The outcome variables are two widely used measures of food security: calorie availability and household expenditure on food items. The main explanatory variables tested include indicators of soil salinity and household-level socio-economic characteristics. The results of logistic regression show that in unadjusted models, soil salinisation has a significant negative effect on household food security. However, this impact becomes statistically insignificant when households’ wealth is taken into account. The results further suggest that education and remittance flows, but not gender or working status of the household head, are significant predictors of food insecurity in the study area. The findings indicate the need to focus scholarly and policy attention on reducing wealth inequalities in tropical deltas in the context of the global sustainable deltas initiative and the proposed Sustainable Development Goals.


Journal of Environmental Monitoring | 2009

Basin characteristics and nutrient losses: the EUROHARP catchment network perspective.

F. Bouraoui; B. Grizzetti; G. Adelsköld; H. Behrendt; I. de Miguel; M. Silgram; S. Gómez; Kirsti Granlund; L. Hoffmann; Brian Kronvang; S. Kværnø; Attila N. Lázár; Maria Mimikou; G. Passarella; Panos Panagos; H. Reisser; B. Schwarzl; C. Siderius; Antanas Sigitas Sileika; A. A. M. F. R. Smit; R. Sugrue; M. VanLiedekerke; J. Zaloudik

The EC-funded EUROHARP project studies the harmonisation of modelling tools to quantify nutrient losses from diffuse sources. This paper describes a set of study areas used in the project from geographical conditions, to land use and land management, geological and hydro-geological perspectives. The status of data availability throughout Europe in relation to the modelling requirements is presented. The relationships between the catchment characteristics and the nutrient export are investigated, using simple data available for all the catchments. In addition, this study also analyses the hydrological representativity of the time series utilised in the EUROHARP project.


Sustainability Science | 2016

Is shrimp farming a successful adaptation to salinity intrusion? A geospatial associative analysis of poverty in the populous Ganges–Brahmaputra–Meghna Delta of Bangladesh

Fiifi Amoako Johnson; Craig W. Hutton; D.D. Hornby; Attila N. Lázár; Anirban Mukhopadhyay

The Ganges–Brahmaputra–Meghna delta of Bangladesh is one of the most populous deltas in the world, supporting as many as 140 million people. The delta is threatened by diverse environmental stressors including salinity intrusion, with adverse consequences for livelihood and health. Shrimp farming is recognised as one of the few economic adaptations to the impacts of the rapidly salinizing delta. Although salinity intrusion and shrimp farming are geographically co-located in the delta, there has been no systematic study to examine their geospatial associations with poverty. In this study, we use multiple data sources including Census, Landsat Satellite Imagery and soil salinity survey data to examine the extent of geospatial clustering of poverty within the delta and their associative relationships with salinity intensity and shrimp farming. The analysis was conducted at the union level, which is the lowest local government administrative unit in Bangladesh. The findings show a strong clustering of poverty in the delta, and whilst different intensities of salinization are significantly associated with increasing poverty, neither saline nor freshwater shrimp farming has a significant association with poverty. These findings suggest that whilst shrimp farming may produce economic growth, in its present form it has not been an effective adaptation for the poor and marginalised areas of the delta. The study demonstrates that there are a series of drivers of poverty in the delta, including salinization, water logging, wetland/mudflats, employment, education and access to roads, amongst others that are discernible spatially, indicating that poverty alleviation programmes in the delta require strengthening with area-specific targeted interventions.


Journal of Environmental Management | 2015

Implications of agricultural land use change to ecosystem services in the Ganges delta

G. M. Tarekul Islam; A. K. M. Saiful Islam; Ahsan Azhar Shopan; Munsur Rahman; Attila N. Lázár; Anirban Mukhopadhyay

Ecosystems provide the basis for human civilization and natural capital for green economy and sustainable development. Ecosystem services may range from crops, fish, freshwater to those that are harder to see such as erosion regulation, carbon sequestration, and pest control. Land use changes have been identified as the main sources of coastal and marine pollution in Bangladesh. This paper explores the temporal variation of agricultural land use change and its implications with ecosystem services in the Ganges delta. With time agricultural lands have been decreased and wetlands have been increased at a very high rate mainly due to the growing popularity of saltwater shrimp farming. In a span of 28 years, the agricultural lands have been reduced by approximately 50%, while the wetlands have been increased by over 500%. A large portion (nearly 40%) of the study area is covered by the Sundarbans which remained almost constant which can be attributed to the strict regulatory intervention to preserve the Sundarbans. The settlement & others land use type has also been increased to nearly 5%. There is a gradual uptrend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between agricultural land use change and ecosystem services in the Ganges delta in Bangladesh. The continuous decline of agricultural land (due to salinization) and an increase of wetland have been attributed to the conversion of agricultural land into shrimp farming in the study area. Such land use change requires significant capital, therefore, only investors and wealthier land owners can get the higher profit from the land conversion while the poor people is left with the environmental consequences that affect their long-term lives and livelihood. An environmental management plan is proposed for sustainable land use in the Ganges delta in Bangladesh.


Scientific Data | 2016

Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh

Helen Adams; W. Neil Adger; Sate Ahmad; Ali Ahmed; Dilruba Begum; Attila N. Lázár; Zoe Matthews; Mohammed Mofizur Rahman; Peter Kim Streatfield

Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries.


Earth’s Future | 2017

Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

Andres Payo; Attila N. Lázár; D. Clarke; Robert J. Nicholls; Lucy Bricheno; Salehin Mashfiqus; Anisul Haque

Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (∼20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.


Science of The Total Environment | 2018

Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach

Abiy S. Kebede; Robert J. Nicholls; Andrew Allan; Iñaki Arto; Ignacio Cazcarro; Jose A. Fernandes; Chris Hill; Craig W. Hutton; Susan Kay; Attila N. Lázár; Ian Macadam; Matthew D. Palmer; Natalie Suckall; Emma L. Tompkins; Katharine Vincent; Paul W. Whitehead

To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges.


Science of The Total Environment | 2018

A framework for identifying and selecting long term adaptation policy directions for deltas

Natalie Suckall; Emma L. Tompkins; Robert J. Nicholls; Abiy S. Kebede; Attila N. Lázár; Craig W. Hutton; Katharine Vincent; Andrew Allan; Alex Chapman; Rezaur Rahman; Tuhin Ghosh; Adelina Mensah

Deltas are precarious environments experiencing significant biophysical, and socio-economic changes with the ebb and flow of seasons (including with floods and drought), with infrastructural developments (such as dikes and polders), with the movement of people, and as a result of climate and environmental variability and change. Decisions are being taken about the future of deltas and about the provision of adaptation investment to enable people and the environment to respond to the changing climate and related changes. The paper presents a framework to identify options for, and trade-offs between, long term adaptation strategies in deltas. Using a three step process, we: (1) identify current policy-led adaptations actions in deltas by conducting literature searches on current observable adaptations, potential transformational adaptations and government policy; (2) develop narratives of future adaptation policy directions that take into account investment cost of adaptation and the extent to which significant policy change/political effort is required; and (3) explore trade-offs that occur within each policy direction using a subjective weighting process developed during a collaborative expert workshop. We conclude that the process of developing policy directions for adaptation can assist policy makers in scoping the spectrum of options that exist, while enabling them to consider their own willingness to make significant policy changes within the delta and to initiate transformative change.


Environmental Modeling & Assessment | 2016

Modelling Primary Producer Interaction and Composition: an Example of a UK Lowland River

Attila N. Lázár; Andrew J. Wade; Brian Moss

Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory-based studies.

Collaboration


Dive into the Attila N. Lázár's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig W. Hutton

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mashfiqus Salehin

Bangladesh University of Engineering and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Clarke

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge