Paula E. Florian
Romanian Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula E. Florian.
Journal of Virology | 2013
Alina Macovei; Catalina Petrareanu; Catalin Lazar; Paula E. Florian; Norica Branza-Nichita
ABSTRACT Despite important progress toward deciphering human hepatitis B virus (HBV) entry into host cells, many aspects of the early steps of the life cycle remained completely obscure. Following endocytosis, HBV must travel through the complex network of the endocytic pathway to reach the cell nucleus and initiate replication. In addition to guiding the viral particles to the replication site, the endosomal vesicles may play a crucial role in infection, providing the appropriate environment for virus uncoating and nucleocapsid release. In this work, we investigated the trafficking of HBV particles internalized in permissive cells. Expression of key Rab proteins, involved in specific pathways leading to different intracellular locations, was modulated in HepaRG cells, using a stable and inducible short hairpin RNA (shRNA) expression system. The trafficking properties of the newly developed cells were demonstrated by confocal microscopy and flow cytometry using specific markers. The results showed that HBV infection strongly depends on Rab5 and Rab7 expression, indicating that HBV transport from early to mature endosomes is required for a step in the viral life cycle. This may involve reduction of disulfide bond-linked envelope proteins, as alteration of the redox potential of the endocytic pathway resulted in inhibition of infection. Subcellular fractionation of HBV-infected cells showed that viral particles are further transported to lysosomes. Intriguingly, infection was not dependent on the lysosomal activity, suggesting that trafficking to this compartment is a “dead-end” route. Together, these data add to our understanding of the HBV-host cell interactions controlling the early stages of infection.
Biomedical Microdevices | 2014
V. Dinca; Paula E. Florian; Livia E. Sima; Laurentiu Rusen; Catalin Constantinescu; Robert W. Evans; M. Dinescu; Anca Roseanu
In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells’ morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films’ surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.
Journal of Medical Virology | 2013
Paula E. Florian; Alina Macovei; Catalin Lazar; Adina L. Milac; Izabela Sokolowska; Costel C. Darie; Robert W. Evans; Anca Roseanu; Norica Branza-Nichita
Lactoferrin (Lf) was shown to exhibit its antiviral activity at an early phase of viral infection and a mechanism whereby the protein interacts with host cell surface molecules has been suggested. In this study, human Lf (HLf) and seven HLf‐derived synthetic peptides (HLP) corresponding to the N‐terminal domain of the native protein (1–47 amino acids sequence) were assayed for their capacity to prevent hepatitis B virus (HBV) infection and replication using the HepaRG and HepG2.2.2.15 cell lines. Of the series tested, four peptides showed 40–75% inhibition of HBV infection in HepaRG cells, HLP1–23, containing the GRRRR cationic cluster, being the most potent. Interestingly, this cluster is one of the two glycosaminoglycan binding sites of the native HLf involved in its antiviral activity; however, the mechanism of the HLP1–23 action was different from that of the full‐length protein, the peptide inhibiting HBV infection when pre‐incubated with the virus, while no effect was observed on the target cells. It is suggested that the cationic cluster is sufficient for the peptide to interact stably with negatively charged residues on the virion envelope, while the absence of the second glycosaminoglycan binding site prevents its efficient attachment to the cells. In conclusion, this peptide may constitute a non‐toxic approach for potential clinical applications in inhibiting HBV entry by neutralizing the viral particles. J. Med. Virol. 85:780–788, 2013.
Journal of Biomedical Materials Research Part A | 2015
Mihaela Trif; Paula E. Florian; Anca Roseanu; Magdalena Moisei; Oana Craciunescu; Carlos E. Astete; Cristina M. Sabliov
Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 μg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy.
Journal of Basic Microbiology | 2016
Paula E. Florian; Yves Rouillé; Simona Ruta; Norica Nichita; Anca Roseanu
Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses’ life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen‐host interactions associated with them. Super‐resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state‐of‐the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground‐braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease.
Biochemistry and Cell Biology | 2012
Paula E. Florian; Alina Macovei; Livia E. Sima; Norica Nichita; Inger Mattsby-Baltzer; Anca Roseanu
Different cell types have been reported to internalize lactoferrin (Lf) by specific or nonspecific receptors. Our studies focused on the endocytic pathway of human Lf in macrophage-like THP-1 cells. Lactoferrin was found to be internalized by THP-1 cells differentiated with phorbol myristate acetate. Incubation of cells with chlorpromazine and dansylcadaverine, inhibitors of clathrin-dependent endocytosis, led to a 50% inhibition of Lf internalization compared with untreated cells. Bafilomycin A1 and NH(4)Cl treatment also resulted in 40%-60% inhibition, respectively, suggesting that the internalization of Lf may partly be mediated by acidic endosome-like organelles. Endocytic uptake of Lf was also cholesterol-dependent, as shown by methyl-β-cyclodextrin or nystatin treatment of the cells prior to internalization. Partial colocalization of Lf and EEA-1, a marker specific for early endosomes, could be observed. Colocalization of Lf with a specific endoplasmic reticulum marker was also detected. Our results suggest that Lf is internalized mainly by the clathrin-dependent pathway in THP-1 cells and targets the ER. The physiological consequences of this intracellular trafficking will be the subject of future investigations.
Nanomaterials | 2017
Raluca Ianchis; Claudia Ninciuleanu; Ioana Catalina Gifu; Elvira Alexandrescu; Raluca Somoghi; Augusta Gabor; Silviu Preda; Cristina Lavinia Nistor; Sabina Georgiana Nitu; Cristian Petcu; Madalina Icriverzi; Paula E. Florian; Anca Roseanu
Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid) (PMAA) with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N,N’-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]) colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h) on either normal or adenocarcinoma cell lines.
Applied Surface Science | 2009
Catalin Constantinescu; Alexandra Palla-Papavlu; Andrei Rotaru; Paula E. Florian; Florica Chelu; Madalina Icriverzi; Anca Nedelcea; V. Dinca; Anca Roseanu; M. Dinescu
Biometals | 2010
Anca Roseanu; Paula E. Florian; Magdalena Moisei; Livia E. Sima; Robert W. Evans; Mihaela Trif
Romanian Journal of Biochemistry | 2009
Paula E. Florian; Mihaela Trif; Robert W. Evans; Received September