Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula J. Booth is active.

Publication


Featured researches published by Paula J. Booth.


Science | 2013

Self-assembling cages from coiled-coil peptide modules

Jordan M. Fletcher; Robert L. Harniman; Frederick R. H. Barnes; Aimee L. Boyle; Andrew M. Collins; Judith Mantell; Thomas H. Sharp; Massimo Antognozzi; Paula J. Booth; Noah Linden; Mervyn J Miles; Richard B. Sessions; Paul Verkade; Derek N. Woolfson

From Coils to Cages Self-assembly strategies that mimic protein assembly, such as the formation of viral coats, often begin with simpler peptide assemblies. Fletcher et al. (p. 595, published online 11 April; see the Perspective by Ardejani and Orner) designed two coiled-coil peptide motifs, a heterodimer, and a homotrimer. Both peptides contained cysteine residues and could link through disulfide bonds, so that the trimer could form the vertices of a hexagonal network and the dimer its edges. However, these components are flexible and, rather than form extended sheets, they closed to form particles ∼100 nanometers in diameter. Hexagonal networks form from heterodimeric and homotrimeric coiled coils and create ~100-nanometer-diameter cages. [Also see Perspective by Ardejani and Orner] An ability to mimic the boundaries of biological compartments would improve our understanding of self-assembly and provide routes to new materials for the delivery of drugs and biologicals and the development of protocells. We show that short designed peptides can be combined to form unilamellar spheres approximately 100 nanometers in diameter. The design comprises two, noncovalent, heterodimeric and homotrimeric coiled-coil bundles. These are joined back to back to render two complementary hubs, which when mixed form hexagonal networks that close to form cages. This design strategy offers control over chemistry, self-assembly, reversibility, and size of such particles.


Science | 2008

Micelles protect membrane complexes from solution to vacuum.

Nelson P. Barrera; Natalie D. Di Bartolo; Paula J. Booth; Carol V. Robinson

The ability to maintain interactions between soluble protein subunits in the gas phase of a mass spectrometer gives critical insight into the stoichiometry and interaction networks of protein complexes. Conversely, for membrane protein complexes in micelles, the transition into the gas phase usually leads to the disruption of interactions, particularly between cytoplasmic and membrane subunits, and a mass spectrum dominated by large aggregates of detergent molecules. We show that by applying nanoelectrospray to a micellar solution of a membrane protein complex, the heteromeric adenosine 5′-triphosphate (ATP)–binding cassette transporter BtuC2D2, we can maintain the complex intact in the gas phase of a mass spectrometer. Dissociation of either transmembrane (BtuC) or cytoplasmic (BtuD) subunits uncovers modifications to the transmembrane subunits and cooperative binding of ATP. By protecting a membrane protein complex within a n-dodecyl-β-d-maltoside micelle, we demonstrated a powerful strategy that will enable the subunit stoichiometry and ligand-binding properties of membrane complexes to be determined directly, by precise determination of the masses of intact complexes and dissociated subunits.


Nature Chemical Biology | 2011

A de novo peptide hexamer with a mutable channel

Nathan R. Zaccai; Bertie Chi; Andrew R. Thomson; Aimee L. Boyle; Gail J. Bartlett; Marc Bruning; Noah Linden; Richard B. Sessions; Paula J. Booth; R. Leo Brady; Derek N. Woolfson

The design of new proteins that expand the repertoire of natural protein structures represents a formidable challenge. Success in this area would increase understanding of protein structure, and present new scaffolds that could be exploited in biotechnology and synthetic biology. Here we describe the design, characterisation and X-ray crystal structure of a new coiled-coil protein. The de novo sequence forms a stand-alone, parallel, 6-helix bundle with a channel running through it. Although lined exclusively by hydrophobic leucine and isoleucine side chains, the 6 Å channel is permeable to water. One layer of leucine residues within the channel is mutable accepting polar aspartic acid (Asp) and histidine (His) side chains, and leading to subdivision and organization of solvent within the lumen. Moreover, these mutants can be combined to form a stable and unique (Asp-His)3 heterohexamer. These new structures provide a basis for engineering de novo proteins with new functions.


FEBS Letters | 1990

Comparison of the Dl/D2/cytochrome b559 reaction centre complex of photosystem two isolated by two different methods

Kleoniki Gounaris; David J. Chapman; Paula J. Booth; B. Crystall; Linda B. Giorgi; David R. Klug; George Porter; James Barber

Photosystem 2 reaction centre complexes prepared either by solubilisation with Triton X‐100 and subsequent exchange into dodecyl maltoside or by a procedure involving a combination of dodecyl maltoside and LiC104, were characterised in terms of chlorophyll a, pheophytin a, β‐carotene and cytochrome b559 content. Time‐resolved chlorophyll fluorescence decay kinetics were measured using both types of complexes. Our data show that the isolated photosystem two reaction centre complex contain, for two pheophytin a molecules, close to six chlorophyll a, two β‐carotene and one cytochrome b559. No major differences were observed in the composition or the kinetic characteristics measured in the samples prepared by the different procedures. Time‐resolved fluorescence measurements indicate that more than 94% of the chlorophyll a in both preparations is coupled to the reaction centre complex.


Biochemistry | 1999

Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer

Curran Ar; Richard H. Templer; Paula J. Booth

Three different lipid systems have been developed to investigate the effect of physicochemical forces within the lipid bilayer on the folding of the integral membrane protein bacteriorhodopsin. Each system consists of lipid vesicles containing two lipid species, one with phosphatidylcholine and the other with phosphatidylethanolamine headgroups, but the same hydrocarbon chains: either L-alpha-1, 2-dioleoyl, L-alpha-1,2-dipalmitoleoyl, or L-alpha-1,2-dimyristoyl. Increasing the mole fraction of the phosphatidylethanolamine lipid increases the desire of each monolayer leaflet in the bilayer to curve toward water. This increases the torque tension of such monolayers, when they are constrained to remain flat in the vesicle bilayer. Consequently, the lateral pressure in the hydrocarbon chain region increases, and we have used excimer fluorescence from pyrene-labeled phosphatidylcholine lipids to probe these pressure changes. We show that bacteriorhodopsin regenerates to about 95% yield in vesicles of 100% phosphatidylcholine. The regeneration yield decreases as the mole fraction of the corresponding phosphatidylethanolamine component is increased. The decrease in yield correlates with the increase in lateral pressure which the lipid chains exert on the refolding protein. We suggest that the increase in lipid chain pressure either hinders insertion of the denatured state of bacterioopsin into the bilayer or slows a folding step within the bilayer, to the extent that an intermediate involved in bacteriorhodopsin regeneration is effectively trapped.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Combined kinetic and thermodynamic analysis of alpha-helical membrane protein unfolding.

Paul Curnow; Paula J. Booth

The analytical toolkit developed for investigations into water-soluble protein folding has yet to be applied in earnest to membrane proteins. A major problem is the difficulty in collecting kinetic data, which are crucial to understanding any reaction. Here, we combine kinetic and thermodynamic studies of the reversible unfolding of an α-helical membrane protein to provide a definitive value for the reaction free energy and a means to probe the transition state. Our analyses show that the major unfolding step in the SDS-induced denaturation of bacteriorhodopsin involves a reduction in α-helical structure and proceeds with a large free-energy change; both our equilibrium and kinetic measurements predict that the free energy of unfolding in the absence of denaturant is +20 kcal·mol−1, with an associated m-value of 25 kcal·mol−1. The rate of unfolding in the absence of denaturant, kuH2O, is surprisingly very slow (≈10−15 s−1). The kinetics also give information on the transition state for this major unfolding step, with a value for β (mf/[mf + mu]) of ≈0.1, indicating that the transition state is close to the unfolded state. We thus present a basis for mapping the structural and energetic properties of membrane protein folding by mutagenesis and classical kinetics.


Current Opinion in Structural Biology | 1999

Membrane protein folding

Paula J. Booth; Curran Ar

Investigating the in vitro refolding of proteins that naturally reside in biological membranes is a notoriously difficult task. Biophysical studies on model systems are beginning to provide a sound physical basis for membrane protein folding that should help to alleviate this problem. Highlights of these studies include insights into the interaction of transmembrane alpha helices, as well as into the important role that membrane lipids play in folding.


ACS Synthetic Biology | 2012

A Basis Set of de Novo Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic Biology

Jordan M. Fletcher; Aimee L. Boyle; Marc Bruning; Gail J. Bartlett; Thomas L. Vincent; Nathan R. Zaccai; Craig T. Armstrong; Elizabeth H. C. Bromley; Paula J. Booth; R. Leo Brady; Andrew R. Thomson; Derek N. Woolfson

Protein engineering, chemical biology, and synthetic biology would benefit from toolkits of peptide and protein components that could be exchanged reliably between systems while maintaining their structural and functional integrity. Ideally, such components should be highly defined and predictable in all respects of sequence, structure, stability, interactions, and function. To establish one such toolkit, here we present a basis set of de novo designed α-helical coiled-coil peptides that adopt defined and well-characterized parallel dimeric, trimeric, and tetrameric states. The designs are based on sequence-to-structure relationships both from the literature and analysis of a database of known coiled-coil X-ray crystal structures. These give foreground sequences to specify the targeted oligomer state. A key feature of the design process is that sequence positions outside of these sites are considered non-essential for structural specificity; as such, they are referred to as the background, are kept non-descript, and are available for mutation as required later. Synthetic peptides were characterized in solution by circular-dichroism spectroscopy and analytical ultracentrifugation, and their structures were determined by X-ray crystallography. Intriguingly, a hitherto widely used empirical rule-of-thumb for coiled-coil dimer specification does not hold in the designed system. However, the desired oligomeric state is achieved by database-informed redesign of that particular foreground and confirmed experimentally. We envisage that the basis set will be of use in directing and controlling protein assembly, with potential applications in chemical and synthetic biology. To help with such endeavors, we introduce Pcomp, an on-line registry of peptide components for protein-design and synthetic-biology applications.


Critical Reviews in Biochemistry and Molecular Biology | 2001

In vitro studies of membrane protein folding.

Paula J. Booth; Richard H. Templer; Wim Meijberg; Sarah Allen; A R Curran; Mark Lorch

The study of membrane protein folding is a new and challenging research field. Consequently, there are few direct studies on the in vitro folding of membrane proteins. This review covers work aimed at understanding folding mechanisms and the intermolecular forces that drive the folding of integral membrane proteins. We discuss the kinetic and thermodynamic studies that have been undertaken. Our review also draws on closely related research, mainly from purification studies of functional membrane proteins, and gives an overview of some of the successful methods. A brief survey is also given of the large body of mutagenesis and fragment work on membrane proteins, as this too has relevance to the folding problem. It is noticeable that the choice of solubilizing detergents and lipids can determine the success of the method, and indeed it appears that particular lipid properties can be used to control the rate and efficiency of folding. This has important ramifications for much in vitro folding work in that it aids our understanding of how to obtain and handle folded, functional protein. With this in mind, we also cover some relevant properties of model, lipid-bilayer systems.


Biochimica et Biophysica Acta | 2000

Estimations of lipid bilayer geometry in fluid lamellar phases.

S.C Costigan; Paula J. Booth; Richard H. Templer

The excess water bilayer thickness, d(l,0), and molecular area, A(0), of lipid amphiphiles in the fluid lamellar phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoleoylphosphatidylcholine (DPolPC) have been estimated between 15 and 50 degrees C and for dimyristoylphosphatidylcholine (DMPC) between 25 and 50 degrees C. These determinations have been made from X-ray measurements on samples of known water composition. With respect to temperature, T, d(l,0) and A(0) are well fitted to a linear equation. We find d(l,0) (A)=(35.68+/-0.02)-(0.0333+/-0.0006)T (degrees C) and A(0) (A(2))=(70.97+/-0.05)+(0.136+/-0.001)T (degrees C) for DOPC, d(l,0) (A)=(35.2+/-0.1)-(0.068+/-0.003)T (degrees C) and A(0) (A(2))=(59.7+/-0.2)+(0.210+/-0.006)T (degrees C) for DMPC, and d(l,0) (A)=(34.54+/-0.03)-(0.0531+/-0.0009)T (degrees C) and A(0) (A(2))=(67.12+/-0.09)+(0.173+/-0.003)T (degrees C) for DPolPC. The accuracy of these estimates depends largely on how accurately the excess water point is determined. Ideally, reliable X-ray and compositional data will be available around the excess water and it may be found by simple inspection, but this is the exception rather than the rule, since samples close to water excess normally sequester sizeable amounts of water in defects, which lead to an underestimate of d(l,0). and overestimate of A(0). In this paper, we report a methodology for identifying and removing such data points and fitting the remaining data in order to determine the excess water point.

Collaboration


Dive into the Paula J. Booth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Crystall

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Meijberg

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge