Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather E. Findlay is active.

Publication


Featured researches published by Heather E. Findlay.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Unfolding free energy of a two-domain transmembrane sugar transport protein

Heather E. Findlay; Nicholas G. Rutherford; Peter J. F. Henderson; Paula J. Booth

Understanding how an amino acid sequence folds into a functional, three-dimensional structure has proved to be a formidable challenge in biological research, especially for transmembrane proteins with multiple alpha helical domains. Mechanistic folding studies on helical membrane proteins have been limited to unusually stable, single domain proteins such as bacteriorhodopsin. Here, we extend such work to flexible, multidomain proteins and one of the most widespread membrane transporter families, the major facilitator superfamily, thus showing that more complex membrane proteins can be successfully refolded to recover native substrate binding. We determine the unfolding free energy of the two-domain, Escherichia coli galactose transporter, GalP; a bacterial homologue of human glucose transporters. GalP is reversibly unfolded by urea. Urea causes loss of substrate binding and a significant reduction in alpha helical content. Full recovery of helical structure and substrate binding occurs in dodecylmaltoside micelles, and the unfolding free energy can be determined. A linear dependence of this free energy on urea concentration allows the free energy of unfolding in the absence of urea to be determined as +2.5 kcal·mol-1. Urea has often been found to be a poor denaturant for transmembrane helical structures. We attribute the denaturation of GalP helices by urea to the dynamic nature of the transporter structure allowing denaturant access via the substrate binding pocket, as well as to helical structure that extends beyond the membrane. This study gives insight into the final, critical folding step involving recovery of ligand binding for a multidomain membrane transporter.


Journal of Molecular Biology | 2014

Relative domain folding and stability of a membrane transport protein

Nicola J. Harris; Heather E. Findlay; John Simms; Xia Liu; Paula J. Booth

There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately +2 kcal mol(-1). There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of +2 kcal mol(-1). This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.


Journal of Physics: Condensed Matter | 2006

The biological significance of lipid–protein interactions

Heather E. Findlay; Paula J. Booth

Biological membranes are complex environments, where membrane proteins are surrounded by a bilayer composed of many different types of lipid. The physical properties of the bilayer influence protein structure, folding and function, while specific interactions with lipid molecules can also contribute towards the biological activity of some membrane proteins. Improving understanding of these interactions has resulted in the development of synthetic lipid systems that allow the bilayer properties to be rationally manipulated in vitro to control protein behaviour.


Scientific Reports | 2016

In vitro synthesis of a Major Facilitator Transporter for specific active transport across Droplet Interface Bilayers

Heather E. Findlay; Nicola J. Harris; Paula J. Booth

Nature encapsulates reactions within membrane-bound compartments, affording sequential and spatial control over biochemical reactions. Droplet Interface Bilayers are evolving into a valuable platform to mimic this key biological feature in artificial systems. A major issue is manipulating flow across synthetic bilayers. Droplet Interface Bilayers must be functionalised, with seminal work using membrane-inserting toxins, ion channels and pumps illustrating the potential. Specific transport of biomolecules, and notably transport against a concentration gradient, across these bilayers has yet to be demonstrated. Here, we successfully incorporate the archetypal Major Facilitator Superfamily transporter, lactose permease, into Droplet Interface Bilayers and demonstrate both passive and active, uphill transport. This paves the way for controllable transport of sugars, metabolites and other essential biomolecular substrates of this ubiquitous transporter superfamily in DIB networks. Furthermore, cell-free synthesis of lactose permease during DIB formation also results in active transport across the interface bilayer. This adds a specific disaccharide transporter to the small list of integral membrane proteins that can be synthesised via in vitro transcription/translation for applications of DIB-based artificial cell systems. The introduction of a means to promote specific transport of molecules across Droplet Interface Bilayers against a concentration gradient gives a new facet to droplet networks.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Lipid bilayer composition modulates the unfolding free energy of a knotted α-helical membrane protein

Michael R. Sanders; Heather E. Findlay; Paula J. Booth

Significance Cells in our bodies sense and communicate with the outside world via proteins embedded in membranes that surround the cells. As with all proteins, a fundamental parameter governing their biological function is the inherent, thermodynamic stability of the folded state. Surprisingly, there is no measure of this thermodynamic stability in a lipid membrane for the ubiquitous class of membrane proteins with structures based on α-helices. We remedy this through the study of a protein related to the physiologically important membrane proteins that are partly responsible for transmitting signals in the nervous system. We identify key properties of the surrounding lipid membrane that regulate the thermodynamic stability of the protein. α-Helical membrane proteins have eluded investigation of their thermodynamic stability in lipid bilayers. Reversible denaturation curves have enabled some headway in determining unfolding free energies. However, these parameters have been limited to detergent micelles or lipid bicelles, which do not possess the same mechanical properties as lipid bilayers that comprise the basis of natural membranes. We establish reversible unfolding of the membrane transporter LeuT in lipid bilayers, enabling the comparison of apparent unfolding free energies in different lipid compositions. LeuT is a bacterial ortholog of neurotransmitter transporters and contains a knot within its 12-transmembrane helical structure. Urea is used as a denaturant for LeuT in proteoliposomes, resulting in the loss of up to 30% helical structure depending upon the lipid bilayer composition. Urea unfolding of LeuT in liposomes is reversible, with refolding in the bilayer recovering the original helical structure and transport activity. A linear dependence of the unfolding free energy on urea concentration enables the free energy to be extrapolated to zero denaturant. Increasing lipid headgroup charge or chain lateral pressure increases the thermodynamic stability of LeuT. The mechanical and charge properties of the bilayer also affect the ability of urea to denature the protein. Thus, we not only gain insight to the long–sought-after thermodynamic stability of an α-helical protein in a lipid bilayer but also provide a basis for studies of the folding of knotted proteins in a membrane environment.


Methods of Molecular Biology | 2013

Folding Alpha-Helical Membrane Proteins into Liposomes In Vitro and Determination of Secondary Structure

Heather E. Findlay; Paula J. Booth

The native environment of integral membrane proteins is a highly complex lipid bilayer composed of many different types of lipids, the physical characteristics of which can profoundly influence protein stability, folding, and function. Secondary transporters are a class of protein where changes to both structure and activity have been observed in different bilayer environments. In order to study these interactions in vitro, it is necessary to extract and purify the protein and exchange it into an artificial lipid system that can be manipulated to control protein behavior. Liposomes are a commonly used model system that is particularly suitable for studying transporters. GalP and LacY can be reconstituted or refolded into vesicles with a high degree of efficiency for further structural analysis. Circular dichroism spectroscopy is an important technique in monitoring protein folding, which allows the decomposition of spectra into secondary structural components.


Angewandte Chemie | 2017

Interrogating membrane protein conformational dynamics within native lipid compositions

Eamonn Reading; Zoe Hall; Chloe Martens; Tabasom Haghighi; Heather E. Findlay; Zainab Ahdash; Argyris Politis; Paula J. Booth

The interplay between membrane proteins and the lipids of the membrane is important for cellular function, however, tools enabling the interrogation of protein dynamics within native lipid environments are scarce and often invasive. We show that the styrene-maleic acid lipid particle (SMALP) technology can be coupled with hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate membrane protein conformational dynamics within native lipid bilayers. We demonstrate changes in accessibility and dynamics of the rhomboid protease GlpG, captured within three different native lipid compositions, and identify protein regions sensitive to changes in the native lipid environment. Our results illuminate the value of this approach for distinguishing the putative role(s) of the native lipid composition in modulating membrane protein conformational dynamics.


Scientific Reports | 2017

The folding, stability and function of lactose permease differ in their dependence on bilayer lipid composition

Heather E. Findlay; Paula J. Booth

Lipids play key roles in Biology. Mechanical properties of the lipid bilayer influence their neighbouring membrane proteins, however it is unknown whether different membrane protein properties have the same dependence on membrane mechanics, or whether mechanics are tuned to specific protein processes of the protein. We study the influence of lipid lateral pressure and electrostatic effects on the in vitro reconstitution, folding, stability and function of a representative of the ubiquitous major facilitator transporter superfamily, lactose permease. Increasing the outward chain lateral pressure in the bilayer, through addition of lamellar phosphatidylethanolamine lipids, lowers lactose permease folding and reconstitution yields but stabilises the folded state. The presence of phosphatidylethanolamine is however required for correct folding and function. An increase in headgroup negative charge through the addition of phosphatidylglycerol lipids favours protein reconstitution but is detrimental to topology and function. Overall the in vitro folding, reconstitution, topology, stability and function of lactose permease are found to have different dependences on bilayer composition. A regime of lipid composition is found where all properties are favoured, even if suboptimal. This lays ground rules for rational control of membrane proteins in nanotechnology and synthetic biology by manipulating global bilayer properties to tune membrane protein behaviour.


Nanotechnology | 2016

Light-activated control of protein channel assembly mediated by membrane mechanics

David Miller; Heather E. Findlay; Oscar Ces; Richard H. Templer; Paula J. Booth

Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.


Biophysical Journal | 2011

In Vitro Studies on the Folding and Function of Lactose Permease in a Synthetic Lipid System

Heather E. Findlay; Paula J. Booth

Biological membranes are complex environments, where membrane proteins are surrounded by a bilayer composed of many different types of lipid. The physical properties of the bilayer influence protein structure, folding and function, while specific interactions with lipid molecules can also contribute towards the biological activity of some membrane proteins. Improving understanding of the interactions has resulted in the development of artifical lipid systems that allow the bilayer properties to be rationally manipulated in vitro to control protein behaviour. The bacterial transporter LacY is a well known integral membrane protein, responsible for the proton-driven uptake of D-lactose in E. coli. With a high resolution structure available and considerable understanding of mechanistic detail, and with observed changes to both structure and function in different bilayer environments, LacY is a good model system for examining the behaviour of a major class of membrane proteins in these lipid systems. Purified LacY has been folded and reconstituted into liposomes of varying synthetic lipid composition and the effect on protein topology and transport activity examined.

Collaboration


Dive into the Heather E. Findlay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma L. R. Compton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge