Paula L. Hedley
Statens Serum Institut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula L. Hedley.
Human Mutation | 2009
Paula L. Hedley; Poul Jørgensen; Sarah Schlamowitz; Romilda Wangari; Johanna C. Moolman-Smook; Paul A. Brink; Valerie A. Corfield; Michael Christiansen
Long QT and short QT syndromes (LQTS and SQTS) are cardiac repolarization abnormalities that are characterized by length perturbations of the QT interval as measured on electrocardiogram (ECG). Prolonged QT interval and a propensity for ventricular tachycardia of the torsades de pointes (TdP) type are characteristic of LQTS, while SQTS is characterized by shortened QT interval with tall peaked T‐waves and a propensity for atrial fibrillation. Both syndromes represent a high risk for syncope and sudden death. LQTS exists as a congenital genetic disease (cLQTS) with more than 700 mutations described in 12 genes (LQT1–12), but can also be acquired (aLQTS). The genetic forms of LQTS include Romano‐Ward syndrome (RWS), which is characterized by isolated LQTS and an autosomal dominant pattern of inheritance, and syndromes with LQTS in association with other conditions. The latter includes Jervell and Lange‐Nielsen syndrome (JLNS), Andersen syndrome (AS), and Timothy syndrome (TS). The genetics are further complicated by the occurrence of double and triple heterozygotes in LQTS and a considerable number of nonpathogenic rare polymorphisms in the involved genes. SQTS is a very rare condition, caused by mutations in five genes (SQTS1–5). The present mutation update is a comprehensive description of all known LQTS‐ and SQTS‐associated mutations. Hum Mutat 30:1486–1511, 2009.
American Journal of Human Genetics | 2012
Mette Nyegaard; Michael Toft Overgaard; Mads Toft Søndergaard; Marta Vranas; Elijah R. Behr; Lasse Hildebrandt; Jacob Lund; Paula L. Hedley; A. John Camm; Göran Wettrell; Inger Fosdal; Michael Christiansen; Anders D. Børglum
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.
Circulation | 2005
Paul A. Brink; Lia Crotti; Valerie A. Corfield; Althea Goosen; Glenda Durrheim; Paula L. Hedley; Marshall Heradien; Gerhard Geldenhuys; Emilio Vanoli; Sara Bacchini; Carla Spazzolini; Andrew L. Lundquist; Dan M. Roden; Alfred L. George; Peter J. Schwartz
Background— In the congenital long-QT syndrome (LQTS), there can be a marked phenotypic heterogeneity. Founder effects, by which many individuals share a mutation identical by descent, represent a powerful tool to further understand the underlying mechanisms and to predict the natural history of mutation-associated effects. We are investigating one such founder effect, originating in South Africa in approximately ad 1700 and segregating the same KCNQ1 mutation (A341V). Methods and Results— The study population involved 320 subjects, 166 mutation carriers (MCs) and 154 noncarriers. When not taking β-blocker therapy, MCs had a wide range of QTc values (406 to 676 ms), and 12% of individuals had a normal QTc (≤440 ms). A QTc >500 ms was associated with increased risk for cardiac events (OR=4.22; 95% CI, 1.12 to 15.80; P=0.033). We also found that MCs with a heart rate <73 bpm were at significantly lower risk (OR=0.23; 95% CI, 0.06 to 0.86; P=0.035). This study also unexpectedly determined that KCNQ1-A341V is associated with greater risk than that reported for large databases of LQT1 patients: A341V MCs are more symptomatic by age 40 years (79% versus 30%) and become symptomatic earlier (7±4 versus 13±9 years, both P<0.001). Accordingly, functional studies of KCNQ1-A341V in CHO cells stably expressing IKs were conducted and identified a dominant negative effect of the mutation on wild-type channels. Conclusions— KCNQ1-A341V is a mutation associated with an unusually severe phenotype, most likely caused by the dominant negative effect of the mutation. The availability of an extended kindred with a common mutation allowed us to identify heart rate, an autonomic marker, as a novel risk factor.
Human Mutation | 2009
Paula L. Hedley; Poul Jørgensen; Sarah Schlamowitz; Johanna C. Moolman-Smook; Valerie A. Corfield; Michael Christiansen
Brugada syndrome (BrS) is a condition characterized by a distinct ST‐segment elevation in the right precordial leads of the electrocardiogram and, clinically, by an increased risk of cardiac arrhythmia and sudden death. The condition predominantly exhibits an autosomal dominant pattern of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss‐of‐function mutations in SCN5A, which encodes the α‐subunit of the Nav1.5 sodium ion channel conducting the depolarizing INa current, causes 15–20% of BrS cases. A few mutations have been described in GPD1L, which encodes glycerol‐3‐phosphate dehydrogenase‐1 like protein; CACNA1C, which encodes the α‐subunit of the Cav1.2 ion channel conducting the depolarizing IL,Ca current; CACNB2, which encodes the stimulating β2‐subunit of the Cav1.2 ion channel; SCN1B and SCN3B, which, in the heart, encodes β‐subunits of the Nav1.5 sodium ion channel, and KCNE3, which encodes the ancillary inhibitory β‐subunit of several potassium channels including the Kv4.3 ion channel conducting the repolarizing potassium Ito current. BrS exhibits variable expressivity, reduced penetrance, and “mixed phenotypes,” where families contain members with BrS as well as long QT syndrome, atrial fibrillation, short QT syndrome, conduction disease, or structural heart disease, have also been described. Hum Mutat 30:1–11, 2009.
Human Mutation | 2009
Paal Skytt Andersen; Ole Havndrup; Lotte Hougs; Karina Meden Sørensen; Morten Jensen; Lars Allan Larsen; Paula L. Hedley; Alex Rojas Bie Thomsen; Johanna C. Moolman-Smook; Michael Christiansen; Henning Bundgaard
The American Heart Association (AHA) recommends family screening for hypertrophic cardiomyopathy (HCM). We assessed the outcome of family screening combining clinical evaluation and screening for sarcomere gene mutations in a cohort of 90 Danish HCM patients and their close relatives, in all 451 persons. Index patients were screened for mutations in all coding regions of 10 sarcomere genes (MYH7, MYL3, MYBPC3, TNNI3, TNNT2, TPM1, ACTC, CSRP3, TCAP, and TNNC1) and five exons of TTN. Relatives were screened for presence of minor or major diagnostic criteria for HCM and tracking of DNA variants was performed. In total, 297 adult relatives (>18 years) (51.2%) fulfilled one or more criteria for HCM. A total of 38 HCM‐causing mutations were detected in 32 index patients. Six patients carried two disease‐associated mutations. Twenty‐two mutations have only been identified in the present cohort. The genetic diagnostic yield was almost twice as high in familial HCM (53%) vs. HCM of sporadic or unclear inheritance (19%). The yield was highest in families with an additional history of HCM‐related clinical events. In relatives, 29.9% of mutation carriers did not fulfil any clinical diagnostic criterion, and in 37.5% of relatives without a mutation, one or more criteria was fulfilled. A total of 60% of family members had no mutation and could be reassured and further follow‐up ceased. Genetic diagnosis may be established in approximately 40% of families with the highest yield in familial HCM with clinical events. Mutation‐screening was superior to clinical investigation in identification of individuals not at increased risk, where follow‐up is redundant, but should be offered in all families with relatives at risk for developing HCM. Hum Mutat 0,1–8, 2008.
Circulation-cardiovascular Genetics | 2012
Morten S. Olesen; Lei Yuan; Bo Liang; Anders G. Holst; Nikolaj Nielsen; Jonas B. Nielsen; Paula L. Hedley; Michael Christiansen; Søren-Peter Olesen; Stig Haunsø; Nicole Schmitt; Thomas Jespersen; Jesper Hastrup Svendsen
Background—Atrial fibrillation (AF) is the most common cardiac arrhythmia. The cardiac sodium channel, NaV1.5, plays a pivotal role in setting the conduction velocity and the initial depolarization of the cardiac myocytes. We hypothesized that early-onset lone AF was associated with genetic variation in SCN5A. Methods and Results—The coding sequence of SCN5A was sequenced in 192 patients with early-onset lone AF. Eight nonsynonymous mutations (T220I, R340Q, T1304M, F1596I, R1626H, D1819N, R1897W, and V1951M) and 2 rare variants (S216L in 2 patients and F2004L) were identified. Of 11 genopositive probands, 6 (3.2% of the total population) had a variant previously associated with long QT syndrome type 3 (LQTS3). The prevalence of LQTS3-associated variants in the patients with lone AF was much higher than expected, compared with the prevalence in recent exome data (minor allele frequency, 1.6% versus 0.3%; P=0.003), mainly representing the general population. The functional effects of the mutations were analyzed by whole cell patch clamp in HEK293 cells; for 5 of the mutations previously associated with LQTS3, patch-clamp experiments showed an increased sustained sodium current, suggesting a mechanistic overlap between LQTS3 and early-onset lone AF. In 9 of 10 identified mutations and rare variants, we observed compromised biophysical properties affecting the transient peak current. Conclusions—In a cohort of patients with early-onset lone AF, we identified a high prevalence of SCN5A mutations previously associated with LQTS3. Functional investigations of the mutations revealed both compromised transient peak current and increased sustained current.
Cardiovascular Research | 2011
Morten S. Olesen; Thomas Jespersen; Jonas B. Nielsen; Bo Liang; Daniel V. Møller; Paula L. Hedley; Michael Christiansen; András Varró; Søren-Peter Olesen; Stig Haunsø; Nicole Schmitt; Jesper Hastrup Svendsen
AIMS Atrial fibrillation (AF) is the most frequent arrhythmia. Screening of SCN5A-the gene encoding the α-subunit of the cardiac sodium channel-has indicated that disturbances of the sodium current may play a central role in the mechanism of lone AF. We tested the hypothesis that lone AF in young patients is associated with genetic mutations in SCN3B and SCN4B, the genes encoding the two β-subunits of the cardiac sodium channel. METHODS AND RESULTS In 192 unrelated lone AF patients, the entire coding sequence and splice junctions of SCN3B and SCN4B were bidirectionally sequenced. Three non-synonymous mutations were found in SCN3B (R6K, L10P, and M161T). Two mutations were novel (R6K and M161T). None of the mutations were present in the control group (n = 432 alleles), nor have any been previously reported in conjunction with AF. All SCN3B mutations affected residues that are evolutionarily conserved across species. Electrophysiological studies on the SCN3B mutation were carried out and all three SCN3B mutations caused a functionally reduced sodium channel current. One synonymous variant was found in SCN4B. CONCLUSION In 192 young lone AF patients, we found three patients with suspected disease-causing non-synonymous mutations in SCN3B, indicating that mutations in this gene contribute to the mechanism of lone AF. The three mutations in SCN3B were investigated electrophysiologically and all led to loss of function in the sodium current, supporting the hypothesis that decreased sodium current enhances AF susceptibility.
European Journal of Human Genetics | 2009
Daniel V. Møller; Paal Skytt Andersen; Paula L. Hedley; Mads Ersbøll; Henning Bundgaard; Johanna C. Moolman-Smook; Michael Christiansen; Lars Køber
We investigated a Danish cohort of 31 unrelated patients with idiopathic dilated cardiomyopathy (IDC), to assess the role that mutations in sarcomere protein genes play in IDC. Patients were genetically screened by capillary electrophoresis single strand conformation polymorphism and subsequently by bidirectional DNA sequencing of conformers in the coding regions of MYH7, MYBPC3, TPM1, ACTC, MYL2, MYL3, TNNT2, CSRP3 and TNNI3. Eight probands carried disease-associated genetic variants (26%). In MYH7, three novel mutations were found; in MYBPC3, one novel variant and two known mutations were found; and in TNNT2, a known mutation was found. One proband was double heterozygous. We find evidence of phenotypic plasticity: three mutations described earlier as HCM causing were found in four cases of IDC, with no history of a hypertrophic phase. Furthermore, one pedigree presented with several cases of classic DCM as well as one case with left ventricular non-compaction. Disease-causing sarcomere gene mutations were found in about one-quarter of IDC patients, and seem to play an important role in the causation of the disease. The genetics is as complex as seen in HCM. Thus, our data suggest that a genetic work-up should include screening of the most prominent sarcomere genes even in the absence of a family history of the disease.
Heart Rhythm | 2010
Rachel Bastiaenen; Paula L. Hedley; Michael Christiansen; Elijah R. Behr
a J c w b A i s n ntroduction ronounced J-point elevation is now a well-described charcteristic of idiopathic ventricular fibrillation (VF), but J aves were previously noted in association with hypotheria and were called Osborn waves. We present the case of patient with idiopathic VF and J waves in whom theraeutic hypothermia increased J-point elevation and apeared to exacerbate ventricular arrhythmias.
Fertility and Sterility | 2012
Pernille Fog Svendsen; Michael Christiansen; Paula L. Hedley; Lisbeth Nilas; Steen B. Pedersen; Sten Madsbad
OBJECTIVE To investigate the role of adipocytokines in the pathophysiology of polycystic ovary syndrome (PCOS) by analyzing the messenger RNA (mRNA) expression and plasma levels of adipocytokines. DESIGN Cross sectional study. SETTING Hospital. PATIENT(S) Thirty-six women with PCOS, 17 lean (LP) and 19 obese (OP), and 24 age- and weight-matched controls, 8 lean (LC) and 16 obese (OC). INTERVENTION(S) Subcutaneous adipose tissue and fasting plasma samples collected from 60 women, and insulin sensitivity evaluated by euglycemic hyperinsulinemic clamp and homeostatic model assessment insulin resistance index (HOMA-IR). MAIN OUTCOME MEASURE(S) mRNA expression of adiponectin, leptin, and interleukin-6 (IL-6) in adipose tissue, and plasma levels of leptin, adiponectin, resistin, visfatin, and tumor necrosis factor α (TNF-α). RESULT(S) The baseline data on body mass index (BMI), age, androgen levels, and insulin sensitivity was published previously. We found no independent effect of PCOS on the adipose expression of leptin, adiponectin, or IL-6 or on the plasma levels of adiponectin, leptin, resistin, visfatin, and TNF-α. Obesity was associated with increased mRNA expression of leptin, lower expression of adiponectin, and increased plasma levels of leptin. CONCLUSION(S) Obesity is per se associated with increased adipose expression and plasma levels of leptin, lower expression of adiponectin, and marginally elevated expression of IL-6, but PCOS does not appear to have an independent effect on the adipose expression of leptin, adiponectin, and IL-6 or the circulating adipocytokines. CLINICAL TRIAL REGISTRATION NUMBER NCT00975832.