Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula M.C. Torres is active.

Publication


Featured researches published by Paula M.C. Torres.


Acta Biomaterialia | 2011

Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures

S. Kannan; Sandra I. Vieira; Susana M. Olhero; Paula M.C. Torres; S. Pina; O. A. B. da Cruz e Silva; J.M.F. Ferreira

The influence of ionic substituents in calcium phosphates intended for bone and tooth replacement biomedical applications is an important research topic, owing to the essential roles played by trace elements in biological processes. The present study investigates the mechanical and biological evaluation of ionic doped hydroxyapatite/β-tricalcium phosphate mixtures which have been prepared by a simple aqueous precipitation method. Heat treating the resultant calcium phosphates in a carbonated atmosphere led to the formation of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures containing the essential ions of biological apatite. The structural analysis determined by Rietveld refinement confirmed the presence of hydroxyapatite as the main phase, together with a considerable amount of β-tricalcium phosphate. Such phase assemblage is essentially due to the influence of substituted ions during synthesis. The results from mechanical tests proved that carbonate substitutions are detrimental for the mechanical properties of apatite-based ceramics. In vitro proliferation assays of osteoblastic-like cells (MC3T3-E1 cell line) to powders revealed that carbonate incorporation can either delay or accelerate MC3T3 proliferation, although reaching the same proliferation levels as control cells after 2 weeks in culture. Further, the powders enable pre-osteoblastic differentiation in a similar manner to control cells, as indirectly measured by ALP activity and Type-I collagen medium secretion.


Acta Biomaterialia | 2010

Newly developed Sr-substituted α-TCP bone cements

S. Pina; Paula M.C. Torres; F. Goetz-Neunhoeffer; J. Neubauer; J.M.F. Ferreira

New bone cements made of Sr-substituted brushite-forming alpha-tricalcium phosphate (alpha-TCP) were prepared and characterized in the present work. The quantitative phase analysis and structural refinement of the starting powders and of hardened cements were performed by X-ray powder diffraction and the Rietveld refinement technique. Isothermal calorimetry along with setting time analysis allowed a precise tracing of the setting process of the pastes. The pastes showed exothermic reactions within the first 10-15 min after mixing and further release of heat after about 1h. An apatitic phase formed upon immersion of the hardened cements in simulated body fluid for 15 and 30 days due to the conversion of brushite into apatite confirming their in vitro mineralization capability. The compressive strength of the wet cement specimens decreased with increasing curing time, being higher in the case of Sr-substituted CPC. The results suggest that the newly developed Sr-substituted brushite-forming alpha-TCP cements show promise for uses in orthopaedic and trauma surgery such as in filling bone defects.


Langmuir | 2008

Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing.

Susana M. Olhero; Ibram Ganesh; Paula M.C. Torres; J.M.F. Ferreira

A stoichiometric MgAl 2O 4 spinel (MAS) powder was synthesized by heat treating at 1400 degrees C for 2 h a compacted mixture of alpha-Al 2O 3 and calcined caustic MgO, followed by crushing and milling. The surface of this powder was then passivated against hydrolysis with H 3PO 4 and Al(H 2PO 4) 3 in an ethanol solution. The as-passivated powder could then be dispersed in water using tetramethylammonium hydroxide (TMAH) and an ammonium salt of poly(acrylic acid) (Duramax D-3005) as dispersing agents and gelcast to form green consolidates with relatively high strength (>15 MPa). The good dispersing behavior of the passivated powder in water was confirmed by the low viscosity of its suspension containing 41-45 vol % solids, demonstrating the viability of replacing organic solvents by water in colloidal processing of MAS-based ceramics. The Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDAX) studies revealed that only negligible amounts of phosphate ions at the surface are required to effectively protect the powder from reacting with water.


Langmuir | 2008

Surface Passivation of MgAl 2 O 4 Spinel Powder by Chemisorbing H 3 PO 4 for Easy Aqueous Processing

Susana M. Olhero; Ibram Ganesh; Paula M.C. Torres; J.M.F. Ferreira

A stoichiometric MgAl 2O 4 spinel (MAS) powder was synthesized by heat treating at 1400 degrees C for 2 h a compacted mixture of alpha-Al 2O 3 and calcined caustic MgO, followed by crushing and milling. The surface of this powder was then passivated against hydrolysis with H 3PO 4 and Al(H 2PO 4) 3 in an ethanol solution. The as-passivated powder could then be dispersed in water using tetramethylammonium hydroxide (TMAH) and an ammonium salt of poly(acrylic acid) (Duramax D-3005) as dispersing agents and gelcast to form green consolidates with relatively high strength (>15 MPa). The good dispersing behavior of the passivated powder in water was confirmed by the low viscosity of its suspension containing 41-45 vol % solids, demonstrating the viability of replacing organic solvents by water in colloidal processing of MAS-based ceramics. The Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDAX) studies revealed that only negligible amounts of phosphate ions at the surface are required to effectively protect the powder from reacting with water.


Journal of Biomedical Materials Research Part B | 2010

In Vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements

S. Pina; Sandra I. Vieira; Paula M.C. Torres; F. Goetz-Neunhoeffer; J. Neubauer; O. A. B. da Cruz e Silva; E. F. da Cruz e Silva; J.M.F. Ferreira

The present study investigated the in vitro performance of brushite-forming Zn- and ZnSr-substituted beta-TCP bone cements in terms of wet mechanical strength and biological response. Quantitative phase analysis and structural refinement of the powdered samples were performed by X-ray powder diffraction and Rietveld refinement technique. Initial and final setting times of the cement pastes, measured using Gilmore needles technique, showed that ZnSrCPC sets faster than ZnCPC. The measured values of the wet strength after 48 h of immersion in PBS solution at 37 degrees C showed that ZnSrCPC cements are stronger than ZnCPC cements. Human osteosarcoma-derived MG63 cell line proved the nontoxicity of the cement powders, using the resazurin metabolic assay.


Acta Biomaterialia | 2015

Injectability of calcium phosphate pastes: Effects of particle size and state of aggregation of β-tricalcium phosphate powders.

Paula M.C. Torres; S. Gouveia; Susana M. Olhero; Ajay Kaushal; J.M.F. Ferreira

The present study discloses a systematic study about the influence of some relevant experimental variables on injectability of calcium phosphate cements. Non-reactive and reactive pastes were prepared, based on tricalcium phosphate doped with 5 mol% (Sr-TCP) that was synthesised by co-precipitation. The varied experimental parameters included: (i) the heat treatment temperature within the range of 800-1100°C; (ii) different milling extents of calcined powders; (iii) the liquid-to-powder ratio (LPR); (iv) the use of powder blends with different particle sizes (PS) and particle size distributions (PSD); (v) the partial replacement of fine powders by large spherical dense granules prepared via freeze granulation method to simulate coarse individual particles. The aim was contributing to better understanding of the effects of PS, PSD, morphology and state of aggregation of the starting powders on injectability of pastes produced thereof. Powders heat treated at 800 and 1000°C with different morphologies but with similar apparent PSD curves obtained by milling/blending originated completely injectable reactive cement pastes at low LPR. This contrasted with non-reactive systems prepared thereof under the same conditions. Hypotheses were put forward to explain why the injectability results collected upon extruding non-reactive pastes cannot be directly transposed to reactive systems. The results obtained underline the interdependent roles of the different powder features and ionic strength in the liquid media on determining the flow and injectability behaviours.


Journal of Inorganic Biochemistry | 2014

Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate

Paula M.C. Torres; Sandra I. Vieira; A.R. Cerqueira; S. Pina; O.A.B. da Cruz Silva; J.C.C. Abrantes; J.M.F. Ferreira

Doping calcium phosphates with trace elements that exist in bone tissues is beneficial in terms of cell-material interactions and in vivo performance of the bone grafts made thereof. Manganese (Mn) is an essential element for normal growth and metabolism of bone tissues, but studies reporting the effects of Mn-doping calcium phosphates are scarce. The present study investigated the influence of Mn-doping on the structure, morphology and biological properties of β-tricalcium phosphate [β-Ca3(PO4)2] (β-TCP). Mn-doped (MnTCP) powders, with Mn contents varying from 0 to 10 mol%, were obtained through an aqueous precipitation method followed by heat treatment at 800 °C. The successful incorporation of Mn into β-TCP structure was proved through quantitative X-ray diffraction (XRD) phase analysis coupled with structural Rietveld refinement. Increasing Mn concentrations led to decreasing trends of a- and c-axis lattice parameters, and Mn-doping also significantly affected the morphology of β-TCP powders. In vitro proliferation and differentiation assays of MC3T3-E1 osteoblastic-like cells, grown in the presence of the powders, revealed that the biological benefits of Mn-doped β-TCP are limited to lower Mn incorporation levels and potentially related to their surface microstructure. The Mn1-βTCP composition revealed the best set of bioactivity properties, potentially a good candidate for future applications of β-TCP materials in osteoregeneration.


Journal of Materials Chemistry B | 2017

Injectable MnSr-doped brushite bone cements with improved biological performance

Paula M.C. Torres; Ana Marote; A.R. Cerqueira; A. J. Calado; J.C.C. Abrantes; Susana M. Olhero; O. A. B. da Cruz e Silva; Sandra I. Vieira; J.M.F. Ferreira

Good mechanical properties and high injectability are the major requirements to ensure widespread application of calcium phosphate cements (CPCs) as bone substitutes in minimally invasive surgeries. However, obtaining CPCs that exhibit a good compromise between these two properties as well as good biological performance is still a great challenge. This study presents novel solutions to improve these properties, which include (i) co-doping β-tricalcium phosphate (β-TCP) powder with Sr and Mn, and (ii) adding small amounts of saccharides (sucrose or fructose) to the setting-liquid solution. The combination of these two strategies enabled full injectability and significantly increased the wet compressive strength of CPCs in comparison to undoped or solely Sr-doped CPCs. Furthermore, the proliferative response of human MG63 osteoblastic cells, their rate of collagen-I secretion, and particularly their growth behaviour on the cement surfaces were also enhanced. The overall improved relevant properties of Mn/Sr co-doped CPCs with added sucrose, including in vitro biological performance, renders them very promising materials for bone regeneration and tissue engineering.


Materials Science and Engineering: C | 2019

Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept

Catarina F. Marques; Susana M. Olhero; Paula M.C. Torres; João C.C. Abrantes; Sara Fateixa; Helena I. S. Nogueira; Isabel A.C. Ribeiro; Ana Bettencourt; Aureliana Sousa; Pedro L. Granja; J.M.F. Ferreira

Advances on the fabrication of sintering-free biphasic calcium phosphate (BCP)/natural polymer composite scaffolds using robocasting as additive manufacturing technique are presented in the present work. Inks with high amounts of BCP powders (45 vol%) containing different HA/β-TCP ratios, in presence of crosslinked polymer, were successfully fine-tuned for extrusion by robocasting. The non-existence of sintering step opened the possibility to obtain drug loaded scaffolds by adding levofloxacin to the extrudable inks. The drug presence induced slightly changes on the rheological behaviour of the inks, more emphasized for the BCP compositions with higher amounts of β-TCP, and consequently, on the microstructure and on the mechanical properties of the final scaffolds. The strong interaction of β-TCP with chitosan difficult the preparation of suitable rheological inks for printing. Drug delivery studies revealed a fast release of levofloxacin with a high burst of drug within the first 30 min. Levofloxacin loaded samples also presented bacteria growth inhibition ability, proving that antibiotic was not degraded during the fabrication process and its bactericidal efficacy was preserved. From the results obtained, the composite scaffolds containing higher amounts of HA (around 80% HA/20% β-TCP) constitute a promising bi-functional synthetic bone substitute for simultaneous local bone regeneration and infection treatments.


Journal of The European Ceramic Society | 2004

Incorporation of granite cutting sludge in industrial porcelain tile formulations

Paula M.C. Torres; Hugo R. Fernandes; Simeon Agathopoulos; Dilshat U. Tulyaganov; J.M.F. Ferreira

Collaboration


Dive into the Paula M.C. Torres's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Pina

University of Aveiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge