Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula Nunes is active.

Publication


Featured researches published by Paula Nunes.


Journal of Leukocyte Biology | 2010

The role of calcium signaling in phagocytosis.

Paula Nunes; Nicolas Demaurex

Immune cells kill microbes by engulfing them in a membrane‐enclosed compartment, the phagosome. Phagocytosis is initiated when foreign particles bind to receptors on the membrane of phagocytes. The best‐studied phagocytic receptors, those for Igs (FcγR) and for complement proteins (CR), activate PLC and PLD, resulting in the intracellular production of the Ca2+‐mobilizing second messengers InsP3 and S1P, respectively. The ensuing release of Ca2+ from the ER activates SOCE channels in the plasma and/or phagosomal membrane, leading to sustained or oscillatory elevations in cytosolic Ca2+ concentration. Cytosolic Ca2+ elevations are required for efficient ingestion of foreign particles by some, but not all, phagocytic receptors and stringently control the subsequent steps involved in the maturation of phagosomes. Ca2+ is required for the solubilization of the actin meshwork that surrounds nascent phagosomes, for the fusion of phagosomes with granules containing lytic enzymes, and for the assembly and activation of the superoxide‐generating NADPH oxidase complex. Furthermore, Ca2+ entry only occurs at physiological voltages and therefore, requires the activity of proton channels that counteract the depolarizing action of the phagocytic oxidase. The molecules that mediate Ca2+ ion flux across the phagosomal membrane are still unknown but likely include the ubiquitous SOCE channels and possibly other types of Ca2+ channels such as LGCC and VGCC. Understanding the molecular basis of the Ca2+ signals that control phagocytosis might provide new, therapeutic tools against pathogens that subvert phagocytic killing.


Traffic | 2013

Regulation of the NADPH Oxidase and Associated Ion Fluxes During Phagocytosis

Paula Nunes; Nicolas Demaurex; Mary C. Dinauer

The production of reactive oxygen species (ROS) within immune cell phagosomes is critical for antimicrobial activity and for correct antigen processing, and influences signaling pathways that direct host responses to infection and inflammation. Because excess oxidants can cause tissue damage and oxidative stress, phagocytes must precisely control both the location and timing of NADPH oxidase activity. How differential regulation is achieved at phagosomes is not well understood. Recent studies have revealed that the PI(3)P phosphoinositide plays an important role in locally boosting phagosomal NADPH oxidase activity through its binding to the p40phox NADPH oxidase subunit. Furthermore, phox subunit dynamics at phagosomes may regulate the timing of the oxidative burst. Novel elements regulating catalytic core trafficking include Rab27 and SNAP‐23. In addition to trafficking events, the activity of the electrogenic oxidase is also governed by ionic fluxes, which are constrained at phagosomes owing to low intraphagosomal volume and dynamic display of channels, transporters, and pumps. New insights on the interdependence of phagosomal pH and ROS have been recently elucidated, and chloride channels important for microbicidal functions, including CFTR, and CLIC family channels, have been identified. Finally, periphagosomal calcium microdomains and calcium‐dependent S100A8/9 protein recruitment may help fine‐tune spatiotemporal regulation of NADPH oxidase activation for an effective immune response.


American Journal of Physiology-renal Physiology | 2011

Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase

Wei Li; Yan Zhang; Richard Bouley; Ying Chen; Toshiyuki Matsuzaki; Paula Nunes; Udo Hasler; Dennis Brown; Hua A. Jenny Lu

Statins are 3-hydroxyl-3-methyglutaryl-CoA reductase inhibitors that are commonly used to inhibit cholesterol biosynthesis. Emerging data have suggested that they also have pleotropic effects, including modulating actin cytoskeleton reorganization. Here, we report an effect of simvastatin on the trafficking of aquaporin-2 (AQP2). Specifically, simvastatin induced the membrane accumulation of AQP2 in cell cultures and kidneys in situ. The effect of simvastatin was independent of protein kinase A activation and phosphorylation at AQP2-Ser(256), a critical event involved in vasopressin (VP)-regulated AQP2 trafficking. Further investigation showed that simvastatin inhibited endocytosis in parallel with downregulation of RhoA activity. Overexpression of active RhoA attenuated simvastatins effect, suggesting the involvement of this small GTPase in simvastatin-mediated AQP2 trafficking. Finally, the effect of simvastatin on urinary concentration was investigated in VP-deficient Brattleboro rats. Simvastatin acutely (3-6 h) increased urinary concentration and decreased urine output in these animals. In summary, simvastatin regulates AQP2 trafficking in vitro and urinary concentration in vivo via events involving downregulation of Rho GTPase activity and inhibition of endocytosis. Our study provides an alternative mechanism to regulate AQP2 trafficking, bypassing the VP-vasopressin receptor signaling pathway.


Current Opinion in Nephrology and Hypertension | 2008

Phosphorylation events and the modulation of aquaporin 2 cell surface expression.

Dennis Brown; Udo Hasler; Paula Nunes; Richard Bouley; Hua A. Jenny Lu

Purpose of reviewThis review highlights the role of phosphorylation in the trafficking and targeting of aquaporin 2. Current knowledge will be put into the context of modulating the cell surface expression of aquaporin 2 by vasopressin in renal epithelial cells, which is critical for regulation of urinary concentration and control of fluid and electrolyte homeostasis. Recent findingsIn addition to previously identified phosphorylation sites on aquaporin 2, new data have revealed three other serine residues in the C-terminus whose phosphorylation is altered by vasopressin. Several steps in aquaporin 2 recycling, including exocytosis and endocytosis, are coordinated by phosphorylation and dephosphorylation to regulate cell surface accumulation. Aquaporin 2 phosphorylation on serine 256 regulates aquaporin 2 association with proteins that are involved in trafficking, including hsc/hsp70 and myelin and lymphocyte-associated protein. SummaryAquaporin 2 trafficking is regulated by phosphorylation of serine 256 and other amino acid residues in its cytoplasmic domain. These events increase or decrease interaction of aquaporin 2 with key regulatory proteins to determine the cellular distribution and fate of aquaporin 2, both after vasopressin addition and under baseline conditions. Better understanding of these mechanisms may provide new therapeutic avenues for patients with X-linked nephrogenic diabetes insipidus, as well as providing basic cell biological information relevant to membrane trafficking processes in general.


Current Biology | 2012

STIM1 Juxtaposes ER to Phagosomes, Generating Ca2+ Hotspots that Boost Phagocytosis

Paula Nunes; Daniela Cornut; Vanessa Bochet; Udo Hasler; Masatsugu Oh-hora; Jean-Marc Waldburger; Nicolas Demaurex

BACKGROUNDnEndoplasmic reticulum (ER) membranes are recruited to phagosomes, but the mechanism and functional significance of this ER recruitment is not known. Here, we show that the ER Ca(2+) sensor stromal interaction molecule 1 (STIM1) sustains high-efficiency phagocytosis by recruiting thin ER cisternae that interact productively but do not fuse with phagosomes.nnnRESULTSnEndogenous STIM1 was recruited to phagosomes upon ER Ca(2+) depletion in mouse neutrophils, and exogenous YFP-STIM1 puncta coincided with localized Ca(2+) elevations around phagosomes in fibroblasts expressing phagocytic receptors. STIM1 ablation decreased phagocytosis, ER-phagosome contacts, and periphagosomal Ca(2+) elevations in both neutrophils and fibroblasts, whereas STIM1 re-expression in Stim1(-/-) fibroblasts rescued these defects, promoted the formation and elongation of tight ER-phagosome contacts upon ER Ca(2+) depletion and increased the shedding of periphagosomal actin rings. Re-expression of a signaling-deficient STIM1 mutant unable to open Ca(2+) channels recruited ER cisternae to the vicinity of phagosomes but failed to rescue phagocytosis, actin shedding, and periphagosomal Ca(2+) elevations. The periphagosomal Ca(2+) hotspots were decreased by extracellular Ca(2+) chelation and by Ca(2+) channels inhibitors, revealing that the Ca(2+) ions originate at least in part from phagosomes.nnnCONCLUSIONSnOur findings indicate that STIM1 recruits ER cisternae near phagosomes for signaling purposes and that the opening of phagosomal Ca(2+) channels generates localized Ca(2+) elevations that promote high-efficiency phagocytosis.


Seminars in Nephrology | 2008

Bypassing Vasopressin Receptor Signaling Pathways in Nephrogenic Diabetes Insipidus

Richard Bouley; Udo Hasler; Hua A. Jenny Lu; Paula Nunes; Dennis Brown

Water reabsorption in the kidney represents a critical physiological event in the maintenance of body water homeostasis. This highly regulated process relies largely on vasopressin (VP) action and on the VP-sensitive water channel (AQP2) that is expressed in principal cells of the kidney collecting duct. Defects in the VP signaling pathway and/or in AQP2 cell surface expression can lead to an inappropriate reduction in renal water reabsorption and the development of nephrogenic diabetes insipidus, a disease characterized by polyuria and polydipsia. This review focuses on the major regulatory steps that are involved in AQP2 trafficking and function. Specifically, we begin with a discussion on VP-receptor-independent mechanisms of AQP2 trafficking, with special emphasis on the nitric oxide-cyclic guanosine monophosphate signaling pathway, followed by a review of the mechanisms that govern AQP2 endocytosis and exocytosis. We then discuss emerging data illustrating roles played by the actin cytoskeleton on AQP2 trafficking, and lastly we consider elements that affect AQP2 protein expression in cells. Recent advances in each topic are summarized and are presented in the context of their potential to serve as a basis for the development of novel therapies that may ultimately improve life quality of nephrogenic diabetes insipidus patients.


Journal of Biological Chemistry | 2008

Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells.

Udo Hasler; Paula Nunes; Richard Bouley; Hua A. Jenny Lu; Toshiyuki Matsuzaki; Dennis Brown

The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser256-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.


Antioxidants & Redox Signaling | 2014

Redox Regulation of Store-Operated Ca2+ Entry

Paula Nunes; Nicolas Demaurex

SIGNIFICANCEnStore-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling mechanism triggered by Ca2+ depletion of the endoplasmic reticulum (ER) and by a variety of cellular stresses. Reactive oxygen species (ROS) are often concomitantly produced in response to these stresses, however, the relationship between redox signaling and SOCE is not completely understood. Various cardiovascular, neurological, and immune diseases are associated with alterations in both Ca2+ signaling and ROS production, and thus understanding this relationship has therapeutic implications.nnnRECENT ADVANCESnSeveral reactive cysteine modifications in stromal interaction molecule (STIM) and Orai proteins comprising the core SOCE machinery were recently shown to modulate SOCE in a redox-dependent manner. Moreover, STIM1 and Orai1 expression levels may reciprocally regulate and be affected by responses to oxidative stress. ER proteins involved in oxidative protein folding have gained increased recognition as important sources of ROS, and the recent discovery of their accumulation in contact sites between the ER and mitochondria provides a further link between ROS production and intracellular Ca2+ handling.nnnCRITICAL ISSUES AND FUTURE DIRECTIONSnFuture research should aim to establish the complete set of SOCE controlling molecules, to determine their redox-sensitive residues, and to understand how intracellular Ca2+ stores dynamically respond to different types of stress. Mapping the precise nature and functional consequence of key redox-sensitive components of the pre- and post-translational control of SOCE machinery and of proteins regulating ER calcium content will be pivotal in advancing our understanding of the complex cross-talk between redox and Ca2+ signaling.


Journal of The American Society of Nephrology | 2011

Calcitonin Has a Vasopressin-like Effect on Aquaporin-2 Trafficking and Urinary Concentration

Richard Bouley; Hua A. Jenny Lu; Paula Nunes; Nicolas Da Silva; Margaret McLaughlin; Ying Chen; Dennis Brown

The most common cause of hereditary nephrogenic diabetes insipidus is a nonfunctional vasopressin (VP) receptor type 2 (V2R). Calcitonin, another ligand of G-protein-coupled receptors, has a VP-like effect on electrolytes and water reabsorption, suggesting that it may affect AQP2 trafficking. Here, calcitonin increased intracellular cAMP and stimulated the membrane accumulation of AQP2 in LLC-PK1 cells. Pharmacologic inhibition of protein kinase A (PKA) and deficiency of a critical PKA phosphorylation site on AQP2 both prevented calcitonin-induced membrane accumulation of AQP2. Fluorescence assays showed that calcitonin led to a 70% increase in exocytosis and a 20% decrease in endocytosis of AQP2. Immunostaining of rat kidney slices demonstrated that calcitonin induced a significant redistribution of AQP2 to the apical membrane of principal cells in cortical collecting ducts and connecting segments but not in the inner stripe or inner medulla. Calcitonin-treated VP-deficient Brattleboro rats had a reduced urine flow and two-fold higher urine osmolality during the first 12 hours of treatment compared with control groups. Although this VP-like effect of calcitonin diminished over the following 72 hours, the tachyphylaxis was reversible. Taken together, these data show that calcitonin induces cAMP-dependent AQP2 trafficking in cortical collecting and connecting tubules in parallel with an increase in urine concentration. This suggests that calcitonin has a potential therapeutic use in nephrogenic diabetes insipidus.


Journal of Leukocyte Biology | 2014

Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases

Antoun El Chemaly; Paula Nunes; Wedali Jimaja; Cyril Castelbou; Nicolas Demaurex

Production of ROS and maintenance of an appropriate pH within the lumen of neutrophil and macrophage phagosomes are important for an effective immune response. Hv1 proton channels sustain ROS production at the plasma membrane, but their role in phagosomes is not known. Here, we tested whether Hv1 channels regulate the pHp and sustain phagosomal ROS production in neutrophils and macrophages. The presence of Hv1 channels on phagosomes of human neutrophils and mouse macrophages was confirmed by Western blot and immunostaining. Phagosomal ROS production, measured with OxyBurst‐coupled targets, was reduced in neutrophils and macrophages isolated from Hv1‐deficient mice. Ratiometric imaging of FITC‐coupled targets showed that phagosomes acidified more slowly in Hv1‐deficient macrophages and transiently alkalinized when the V‐ATPase was inhibited. In WT neutrophils, 97% of phagosomes remained neutral 30 min after particle ingestion, whereas 37% of Hv1‐deficient phagosomes were alkaline (pH>8.3) and 14% acidic (pH<6.3). The subpopulation of acidic phagosomes was eliminated by V‐ATPase inhibition, whereas NOX inhibition caused a rapid acidification, independently of Hv1 expression. Finally, V‐ATPase accumulation on phagosomes was inversely correlated to intraphagosomal ROS production in neutrophils. These data indicate that Hvcn1 ablation deregulates neutrophil pHp, leading to alkalinization in phagosomes with residual ROS production or to the early accumulation of V‐ATPase on phagosomes that fail to mount an oxidative response. Hv1 channels therefore differentially regulate the pHp in neutrophils and macrophages, sustaining rapid acidification in macrophage phagosomes and maintaining a neutral pH in neutrophil phagosomes.

Collaboration


Dive into the Paula Nunes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge