Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula S. Teixeira is active.

Publication


Featured researches published by Paula S. Teixeira.


Astronomy and Astrophysics | 2010

Accretion dynamics and disk evolution in NGC 2264: a study based on CoRoT photometric observations

Silvia H. P. Alencar; Paula S. Teixeira; Marcelo Medeiros Guimarães; Pauline McGinnis; J. F. Gameiro; Jerome Bouvier; S. Aigrain; E. Flaccomio; F. Favata

Context. The young cluster NGC 2264 was observed with the CoRoT satellite for 23 days uninterruptedly in March 2008 with unprecedented photometric accuracy. We present the first results of our analysis of the accreting population belonging to the cluster as observed by CoRoT. Aims. We search for possible light curve variability of the same nature as that observed in the classical T Tauri star AA Tau, which was attributed to a magnetically controlled inner disk warp. The inner warp dynamics is supposed to be directly associated with the interaction between the stellar magnetic field and the inner disk region. Methods. We analyzed the CoRoT light curves of 83 previously known classical T Tauri stars that belong to NGC 2264 classifying them according to their light-curve morphology. We also studied the CoRoT light-curve morphology as a function of a Spitzer-based classification of the star-disk systems. Results. The classification derived on the basis of the CoRoT light-curve morphology agrees very well with the Spitzer IRAC-based classification of the systems. The percentage of AA Tau-like light curves decreases as the inner disk dissipates, from 40% ± 10% in systems with thick inner disks to 36% ± 16% in systems with anemic disks and zero in naked photosphere systems. Indeed, 91% ± 29% of the CTTS with naked photospheres exhibit pure spot-like variability, while only 18% ± 7% of the thick disk systems do so, presumably those seen at low inclination and thus free of variable obscuration. Conclusions. AA Tau-like light curves are found to be fairly common, with a frequency of at least ~30 to 40% in young stars with inner dusty disks. The temporal evolution of the light curves indicates that the structure of the inner disk warp, located close to the corotation radius and responsible for the obscuration episodes, varies over a timescale of a few (~1-3) rotational periods. This probably reflects the highly dynamical nature of the star-disk magnetospheric interaction.


The Astrophysical Journal | 2006

Identifying Primordial Substructure in NGC 2264

Paula S. Teixeira; Charles J. Lada; Erick T. Young; Massimo Marengo; August Albert Muench; James Muzerolle; Nick Siegler; G. H. Rieke; Lee Hartmann; S. Thomas Megeath; Giovanni G. Fazio

We present new Spitzer Space Telescope observations of the young cluster NGC 2264. Observations at 24 μm with the Multiband Imaging Photometer have enabled us to identify the most highly embedded and youngest objects in NGC 2264. This Letter reports on one particular region of NGC 2264 where bright 24 μm sources are spatially configured in curious linear structures with quasi-uniform separations. The majority of these sources (~60%) are found to be protostellar in nature, with Class I spectral energy distributions. Comparison of their spatial distribution with submillimeter data from Wolf-Chase et al. and millimeter data from Peretto et al. shows a close correlation between the dust filaments and the linear spatial configurations of the protostars, indicating that star formation is occurring primarily within dense, dusty filaments. Finally, the quasi-uniform separations of the protostars are found to be comparable in magnitude to the expected Jeans length, suggesting thermal fragmentation of the dense filamentary material.


Monthly Notices of the Royal Astronomical Society | 2011

UWISH2 -- The UKIRT Widefield Infrared Survey for H2

Dirk Froebrich; C. J. Davis; G. Ioannidis; Tim M. Gledhill; Michihiro Takami; Antonio C. Chrysostomou; Janet E. Drew; J. Eislöffel; Amanda Gosling; Roland Gredel; J. Hatchell; Klaus W. Hodapp; M. S. N. Kumar; P. W. Lucas; Henry E. Matthews; M. G. Rawlings; Michael D. Smith; B. Stecklum; W. P. Varricatt; Hyo-Joo Lee; Paula S. Teixeira; Colin Aspin; Tigran Khanzadyan; Jennifer L. Karr; Hyun-Jeong Kim; Bon-Chul Koo; Jun-Haeng Lee; Yong-Hyun Lee; Tigran Yu. Magakian; T. A. Movsessian

The definitive version can be found at : http://onlinelibrary.wiley.com/ Copyright Wiley-Blackwell


Astronomy and Astrophysics | 2014

Mapping accretion and its variability in the young open cluster NGC 2264: a study based on u-band photometry

Laura Venuti; J. Bouvier; E. Flaccomio; Silvia H. P. Alencar; J. Irwin; John R. Stauffer; Ann Marie Cody; Paula S. Teixeira; Alana Sousa; G. Micela; Jean-Charles Cuillandre; G. Peres

Context. The accretion process has a central role in the formation of stars and planets. Aims. We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). Methods. We performed a deep ugri mapping as well as a simultaneous u-band+r-band monitoring of the star-forming region with CFHT/MegaCam in order to directly probe the accretion process onto the star from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range ~0.1–2 M_⊙. About 40% of the sample are classical (accreting) T Tauri stars, based on various diagnostics (H_α, UV and IR excesses). The remaining non-accreting members define the (photospheric + chromospheric) reference UV emission level over which flux excess is detected and measured. Results. We revise the membership status of cluster members based on UV accretion signatures, and report a new population of 50 classical T Tauri star (CTTS) candidates. A large range of UV excess is measured for the CTTS population, varying from a few times 0.1 to ~3 mag. We convert these values to accretion luminosities and accretion rates, via a phenomenological description of the accretion shock emission. We thus obtain mass accretion rates ranging from a few 10^(-10) to ~10^(-7) M_⊙/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6σ correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for censored data (upper limits), yields Ṁ_(acc) ∝ M_*^(1.4±0.3). At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, i.e., much smaller than the observed spread in accretion rates. We suggest that a non-negligible age spread across the star-forming region may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different Ṁ_(acc) regimes. Conclusions. A huge variety of accretion properties is observed for young stellar objects in the NGC 2264 cluster. While a definite correlation seems to hold between mass accretion rate and stellar mass over the mass range probed here, the origin of the large intrinsic spread observed in mass accretion rates at any given mass remains to be explored.


The Astrophysical Journal | 2005

From Dusty Filaments to Cores to Stars: An Infrared Extinction Study of Lupus 3*

Paula S. Teixeira; Charles J. Lada; J. Alves

We present deep near-infrared observations of a dense region of the Lupus 3 cloud obtained with the ESO NTT and VLT. Using the NICE method, we construct a detailed high angular resolution dust extinction map of the cloud. The dust extinction map reveals embedded globules, a dense filament, and a dense ring structure. We derive dust column densities and masses for the entire cloud and for the individual structures therein. We construct radial extinction profiles for the embedded globules and find a range of profile shapes from relatively shallow profiles for cores with low peak extinctions, to relatively steep profiles for cores with high extinction. Overall, the profiles are similar to those of pressure-truncated isothermal spheres of varying center-to-edge density contrast. We apply Bonnor-Ebert analysis to compare the density profiles of the embedded cores in a quantitative manner and derive physical parameters such as temperatures, central densities, and external pressures. We examine the stability of the cores and find that two cores are likely stable and two are likely unstable. One of these latter cores is known to harbor an active protostar. Finally, we discuss the relation between an emerging cluster in the Lupus 3 cloud and the ring structure identified in our extinction map. Assuming that the ring is the remnant of the core within which the cluster originally formed, we estimate that a star formation efficiency of ~30% characterized the formation of the small cluster. Our observations of the Lupus 3 cloud suggest an intimate link between the structure of a dense core and its state of star-forming activity. The dense cores in this cloud are found to span the entire range of evolution from a stable, starless core of modest central concentration, to an unstable, star-forming core that is highly centrally concentrated, to a significantly disrupted core from which a cluster of young stars is emerging.


Astronomy and Astrophysics | 2015

CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264

Pauline McGinnis; Silvia H. P. Alencar; R. Guimarães; Alana Sousa; John R. Stauffer; J. Bouvier; Luisa Marie Rebull; N.N.J. Fonseca; Laura Venuti; Lynne A. Hillenbrand; Ann Marie Cody; Paula S. Teixeira; S. Aigrain; F. Favata; G. Fűrész; Frederick J. Vrba; E. Flaccomio; Neal J. Turner; J. F. Gameiro; William Herbst; M. Morales-Calderon; G. Micela

Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims. The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods. In order to understand the mechanism causing these stars’ photometric behavior, we investigate veiling variability in their spectra and u − r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results. AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions. The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M_⊙ ≲ M ≲ 2.0 M_⊙. Assuming random inclinations, we estimate that nearly all systems in this mass range likely possess an inner disk warp. We attribute this to a possible change in magnetic field configurations among stars of lower mass.


Astronomy and Astrophysics | 2016

X-shooter study of accretion in Chamaeleon I

C. F. Manara; D. Fedele; Gregory J. Herczeg; Paula S. Teixeira

We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to 700 nm. The dependence of accretion with stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are robust to sample selection.


Monthly Notices of the Royal Astronomical Society | 2013

Disc clearing of young stellar objects: evidence for fast inside-out dispersal

C. M. Koepferl; B. Ercolano; James E. Dale; Paula S. Teixeira; Thorsten Ratzka; L. Spezzi

The time-scale over which and the modality by which young stellar objects (YSOs) disperse their circumstellar discs dramatically influences the eventual formation and evolution of planetary systems. By means of extensive radiative transfer (RT) modelling, we have developed a new set of diagnostic diagrams in the infrared colour-colour plane (K-[24] vs. K-[8]), to aid with the classification of the evolutionary stage of YSOs from photometric observations. Our diagrams allow the differentiation of sources with unevolved (primordial) discs from those evolving according to different clearing scenarios (e.g. homologous depletion vs. inside-out dispersal), as well as from sources that have already lost their disc. Classification of over 1500 sources in 15 nearby star-forming regions reveals that approximately 39 % of the sources lie in the primordial disc region, whereas between 31 % and 32 % disperse from the inside-out and up to 22 % of the sources have already lost their disc. Less than 2 % of the objects in our sample lie in the homogeneous draining regime. Time-scales for the transition phase are estimated to be typically a few 10^5 years independent of stellar mass. Therefore, regardless of spectral type, we conclude that currently available infrared photometric surveys point to fast (of order 10 % of the global disc lifetime) inside-out clearing as the preferred mode of disc dispersal.


Astronomy and Astrophysics | 2012

Spitzer observations of NGC 2264: the nature of the disk population

Paula S. Teixeira; Charles J. Lada; Massimo Marengo; Elizabeth A. Lada

Aims. NGC2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC2264 and to analyse the primordial disk evolution of its members. Methods. The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results. We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 10 3 Mabove an AV of 7mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥∼25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub- clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions. NGC2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population ap- pear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).


The Astrophysical Journal | 2006

SPITZER AND MAGELLAN OBSERVATIONS OF NGC 2264: A REMARKABLE STAR-FORMING CORE NEAR IRS 2

Erick T. Young; Paula S. Teixeira; Charles J. Lada; James Muzerolle; S. E. Persson; David C. Murphy; Nick Siegler; Massimo Marengo; Oliver Krause; A. Mainzer

We analyze Spitzer and Magellan observations of a star-forming core near IRS 2 in the young cluster NGC 2264. The submillimeter source IRAS 12 S1, previously believed to be an intermediate-mass Class 0 object is shown to be a dense collection of embedded, low-mass stars. We argue that this group of stars represents the fragmenting collapse of a dense, turbulent core, using a number of indicators of extreme youth. With reasonable estimates for the velocity dispersion in the group, we estimate a dynamical lifetime of only a few times 104 yr. Spectral energy distributions of stars in the core are consistent with Class I or Class 0 assignments. We present observations of an extensive system of molecular hydrogen emission knots. The luminosity of the objects in the core region are consistent with roughly solar mass protostars.

Collaboration


Dive into the Paula S. Teixeira's collaboration.

Top Co-Authors

Avatar

Charles J. Lada

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Alves

University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Muzerolle

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia H. P. Alencar

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge