Paulette Decottignies
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulette Decottignies.
The EMBO Journal | 2003
Ivan Mijakovic; Sandrine Poncet; Grégory Boël; Alain Mazé; Sylvie Gillet; Emmanuel Jamet; Paulette Decottignies; Christophe Grangeasse; Patricia Doublet; Pierre Le Maréchal; Josef Deutscher
Protein‐tyrosine kinases regulating bacterial exopolysaccharide synthesis autophosphorylate on tyrosines located in a conserved C‐terminal region. So far no other substrates have been identified for these kinases. Here we demonstrate that Bacillus subtilis YwqD not only autophosphorylates at Tyr‐228, but that it also phosphorylates the two UDP‐glucose dehydrogenases (UDP‐glucose DHs) YwqF and TuaD at a tyrosine residue. However, phosphorylation of YwqF and TuaD occurs only in the presence of the transmembrane protein YwqC. The presumed intracellular C‐terminal part of YwqC (last 50 amino acids) seems to interact with the tyrosine‐kinase and to allow YwqD‐catalysed phosphorylation of the two UDP‐glucose DHs, which are key enzymes for the synthesis of acidic polysaccharides. However, only when phosphorylated by YwqD do the two enzymes exhibit detectable UDP‐glucose DH activity. Dephosphorylation of P‐Tyr‐YwqF and P‐Tyr‐TuaD by the P‐Tyr‐protein phosphatase YwqE switched off their UDP‐glucose DH activity. YwqE, which is encoded by the fourth gene of the B.subtilis ywqCDEF operon, also dephosphorylates P‐Tyr‐YwqD.
FEBS Journal | 2007
Mirko Zaffagnini; Laure Michelet; Christophe Marchand; Francesca Sparla; Paulette Decottignies; Pierre Le Maréchal; Myroslawa Miginiac-Maslow; Graham Noctor; Paolo Trost; Stéphane D. Lemaire
In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post‐translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A4‐glyceraldehyde‐3‐phosphate dehydrogenase (A4‐GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H2O2. The formation of a mixed disulfide between glutathione and A4‐GAPDH resulted in the inhibition of enzyme activity. A4‐GAPDH was also inhibited by oxidants such as H2O2. However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the AnBn‐GAPDH isozyme in either A2B2 or A8B8 conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3‐bisphosphoglycerate. In the presence of 1,3‐bisphosphoglycerate, A4‐GAPDH was fully protected from either oxidation or glutathionylation. Site‐directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active‐site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A4‐GAPDH from irreversible oxidation under stress.
Journal of Biological Chemistry | 2008
Laure Michelet; Mirko Zaffagnini; Hélène Vanacker; Pierre Maréchal; Christophe Marchand; Michael Schroda; Stéphane D. Lemaire; Paulette Decottignies
Glutathionylation is the major form of S-thiolation in cells. This reversible redox post-translational modification consists of the formation of a mixed disulfide between a free thiol on a protein and a molecule of glutathione. This recently described modification, which is considered to occur under oxidative stress, can protect cysteine residues from irreversible oxidation, and alter positively or negatively the activity of diverse proteins. This modification and its targets have been mainly studied in non-photosynthetic organisms so far. We report here the first proteomic approach performed in vivo on photosynthetically competent cells, using the eukaryotic unicellular green alga Chlamydomonas reinhardtii with radiolabeled [35S]cysteine to label the glutathione pool and diamide as oxidant. This method allowed the identification of 25 targets, mainly chloroplastic, involved in various metabolic processes. Several targets are related to photosynthesis, such as the Calvin cycle enzymes phosphoglycerate kinase and ribose-5-phosphate isomerase. A number of targets, such as chaperones and peroxiredoxins, are related to stress responses. The glutathionylation of HSP70B, chloroplastic 2-Cys peroxiredoxin and isocitrate lyase was confirmed in vitro on purified proteins and the targeted residues were identified.
Molecular & Cellular Proteomics | 2012
Mirko Zaffagnini; Mariette Bedhomme; Hayam Groni; Christophe Marchand; Carine Puppo; Brigitte Gontero; Corinne Cassier-Chauvat; Paulette Decottignies; Stéphane D. Lemaire
Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.
Journal of Biological Chemistry | 2009
Jérémy Couturier; Cha San Koh; Mirko Zaffagnini; Alison M. Winger; José M. Gualberto; Catherine Corbier; Paulette Decottignies; Jean-Pierre Jacquot; Stéphane D. Lemaire; Claude Didierjean; Nicolas Rouhier
Glutaredoxins (Grxs) are efficient catalysts for the reduction of mixed disulfides in glutathionylated proteins, using glutathione or thioredoxin reductases for their regeneration. Using GFP fusion, we have shown that poplar GrxS12, which possesses a monothiol 28WCSYS32 active site, is localized in chloroplasts. In the presence of reduced glutathione, the recombinant protein is able to reduce in vitro substrates, such as hydroxyethyldisulfide and dehydroascorbate, and to regenerate the glutathionylated glyceraldehyde-3-phosphate dehydrogenase. Although the protein possesses two conserved cysteines, it is functioning through a monothiol mechanism, the conserved C terminus cysteine (Cys87) being dispensable, since the C87S variant is fully active in all activity assays. Biochemical and crystallographic studies revealed that Cys87 exhibits a certain reactivity, since its pKa is around 5.6. Coupled with thiol titration, fluorescence, and mass spectrometry analyses, the resolution of poplar GrxS12 x-ray crystal structure shows that the only oxidation state is a glutathionylated derivative of the active site cysteine (Cys29) and that the enzyme does not form inter- or intramolecular disulfides. Contrary to some plant Grxs, GrxS12 does not incorporate an iron-sulfur cluster in its wild-type form, but when the active site is mutated into YCSYS, it binds a [2Fe-2S] cluster, indicating that the single Trp residue prevents this incorporation.
Plant Molecular Biology | 1995
Mariana Stein; Jean-Pierre Jacquot; Emmanuelle Jeannette; Paulette Decottignies; Michael Hodges; Jean-Marc Lancelin; Virginie Mittard; Jean-Marie Schmitter; Myroslawa Miginiac-Maslow
Based on known amino acid sequences, probes have been generated by PCR and used for the subsequent isolation of cDNAs and genes coding for two thioredoxins (m and h) of Chlamydomonas reinhardtii. Thioredoxin m, a chloroplastic protein, is encoded as a preprotein of 140 amino acids (15 101 Da) containing a transit peptide of 34 amino acids with a very high content of Ala and Arg residues. The sequence for thioredoxin h codes for a 113 amino acid protein with a molecular mass of 11817 Da and no signal sequence. The thioredoxin m gene contains a single intron and seems to be more archaic in structure than the thioredoxin h gene, which is split into 4 exons. The cDNA sequences encoding C. reinhardtii thioredoxins m and h have been integrated into the pET-3d expression vector, which permits efficient production of proteins in Escherichia coli cells. A high expression level of recombinant thioredoxins was obtained (up to 50 mg/l culture). This has allowed us to study the biochemical/biophysical properties of the two recombinant proteins. Interestingly, while the m-type thioredoxin was found to have characteristics very close to the ones of prokaryotic thioredoxins, the h-type thioredoxin was quite different with respect to its kinetic behaviour and, most strikingly, its heat denaturation properties.
Plant Molecular Biology | 1994
Michael Hodges; Myroslawa Miginiac-Maslow; Paulette Decottignies; Jean-Pierre Jacquot; Mariana Stein; Loïc Lepiniec; Claude Crétin; Pierre Gadal
The recently cloned cDNA for pea chloroplast thioredoxin f was used to produce, by PCR, a fragment coding for a protein lacking the transit peptide. This cDNA fragment was subcloned into a pET expression vector and used to transform E. coli cells. After induction with IPTG the transformed cells produce the protein, mainly in the soluble fraction of the broken cells. The recombinant thioredoxin f has been purified and used to raise antibodies and analysed for activity. The antibodies appear to be specific towards thioredoxin f and do not recognize other types of thioredoxin. The recombinant protein could activate two chloroplastic enzymes, namely NADP-dependent malate dehydrogenase (NADP-MDH) and fructose 1,6-bisphosphatase (FBPase), both using dithiothreitol as a chemical reductant and in a light-reconstituted/thylakoid assay. Recombinant pea thioredoxin f turned out to be an excellent catalyst for NADP-MDH activation, being the more efficient than a recombinant m-type thioredoxin of Chlamydomonas reinhardtii and the thioredoxin of E. coli. At the concentrations of thioredoxin used in the target enzyme activation assays only the recombinant thioredoxin f activated the FBPase.
Journal of Biological Chemistry | 2006
Sébastien Graziani; Julie Bernauer; Stéphane Skouloubris; Marc Graille; Cong-Zhao Zhou; Christophe Marchand; Paulette Decottignies; Herman van Tilbeurgh; Hannu Myllykallio; Ursula Liebl
By using biochemical and structural analyses, we have investigated the catalytic mechanism of the recently discovered flavin-dependent thymidylate synthase ThyX from Paramecium bursaria chlorella virus-1 (PBCV-1). Site-directed mutagenesis experiments have identified several residues implicated in either NADPH oxidation or deprotonation activity of PBCV-1 ThyX. Chemical modification by diethyl pyrocarbonate and mass spectroscopic analyses identified a histidine residue (His53) crucial for NADPH oxidation and located in the vicinity of the redox active N-5 atom of the FAD ring system. Moreover, we observed that the conformation of active site key residues of PBCV-1 ThyX differs from earlier reported ThyX structures, suggesting structural changes during catalysis. Steady-state kinetic analyses support a reaction mechanism where ThyX catalysis proceeds via formation of distinct ternary complexes without formation of a methyl enzyme intermediate.
Journal of Biological Chemistry | 2009
Monika Kaminska; Svitlana Havrylenko; Paulette Decottignies; Sylvie Gillet; Pierre Maréchal; Boris Negrutskii; Marc Mirande
The spatio-temporal organization of proteins within the cytoplasm of eukaryotic cells rests in part on the assembly of stable and transient multiprotein complexes. Here we examined the assembly of the multiaminoacyl-tRNA synthetase complex (MARS) in human cells. This complex contains nine aminoacyl-tRNA synthetases and three auxiliary proteins and is a hallmark of metazoan species. Isolation of the complexes has been performed by tandem affinity purification from human cells in culture. To understand the rules of assembly of this particle, expression of the three nonsynthetase components of MARS, p18, p38, and p43, was blocked by stable small interfering RNA silencing. The lack of these components was not lethal for the cells, but cell growth was slightly reduced. The residual complexes that could form in vivo in the absence of the auxiliary proteins were isolated by tandem affinity purification. From the repertoire of the subcomplexes that could be isolated, a comprehensive map of protein-protein interactions mediating complex assembly is deduced. The data are consistent with a structural role of the three nonsynthetase components of MARS, with p38 connecting two subcomplexes that may form in the absence of p38.
Journal of Bacteriology | 2012
Christophe Marchand; Christophe Salmeron; Roland Bou Raad; Xavier Meniche; Mohamed Chami; Muriel Masi; Didier Blanot; Mamadou Daffé; Marielle Tropis; Emilie Huc; Pierre Maréchal; Paulette Decottignies; Nicolas Bayan
Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The cell wall of these bacteria is composed of a heteropolymer of peptidoglycan (PG) linked to arabinogalactan (AG), which in turn is covalently associated with an atypical outer membrane, here called mycomembrane (M). The latter structure has been visualized by cryo-electron microscopy of vitreous sections, but its biochemical composition is still poorly defined, thereby hampering the elucidation of its physiological function. In this report, we show for the first time that the mycomembrane-linked heteropolymer of PG and AG (M-AG-PG) of C. glutamicum can be physically separated from the inner membrane on a flotation density gradient. Analysis of purified M-AG-PG showed that the lipids that composed the mycomembrane consisted almost exclusively of mycolic acid derivatives, with only a tiny amount, if any, of phospholipids and lipomannans, which were found with the characteristic lipoarabinomannans in the plasma membrane. Proteins associated with or inserted in the mycomembrane were extracted from M-AG-PG with lauryl-dimethylamine-oxide (LDAO), loaded on an SDS-PAGE gel, and analyzed by tandem mass spectrometry or by Western blotting. Sixty-eight different proteins were identified, 19 of which were also found in mycomembrane fragments released by the terminal-arabinosyl-transferase-defective ΔAftB strain. Almost all of them are predicted to contain a signal sequence and to adopt the characteristic β-barrel structure of Gram-negative outer membrane proteins. These presumed mycomembrane proteins include the already-known pore-forming proteins (PorA and PorB), 5 mycoloyltransferases (cMytA, cMytB, cMytC, cMytD, and cMytF), several lipoproteins, and unknown proteins typified by a putative C-terminal hydrophobic anchor.