Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulina Kaniewska is active.

Publication


Featured researches published by Paulina Kaniewska.


PLOS ONE | 2012

Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

Paulina Kaniewska; Paul R. Campbell; David I. Kline; Mauricio Rodriguez-Lanetty; David J. Miller; Sophie Dove; Ove Hoegh-Guldberg

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.


Science | 2011

Complex diel cycles of gene expression in coral-algal symbiosis.

O. Levy; Paulina Kaniewska; Shahar Alon; E. Eisenberg; Sarit Karako-Lampert; Line K. Bay; Ruth Reef; Mauricio Rodriguez-Lanetty; David J. Miller; Ove Hoegh-Guldberg

Rhythmically expressed genes in reef-building corals may be required to deal with oxidative stress and the coral-algal symbiosis. Circadian regulation of plant-animal endosymbioses is complicated by a diversity of internal and external cues. Here, we show that stress-related genes in corals are coupled to the circadian clock, anticipating major changes in the intracellular milieu. In this regard, numerous chaperones are “hard-wired” to the clock, effectively preparing the coral for the consequences of oxidative protein damage imposed by symbiont photosynthesis (when O2 > 250% saturation), including synexpression of antioxidant genes being light-gated. Conversely, central metabolism appears to be regulated by the hypoxia-inducible factor system in coral. These results reveal the complexity of endosymbiosis as well as the plasticity regulation downstream of the circadian clock.


Molecular Ecology | 2005

Sexual selection for male dominance reduces opportunities for female mate choice in the European bitterling (Rhodeus sericeus)

Martin Reichard; Josef Bryja; Martina Dávidová; Paulina Kaniewska; Carl Smith

Sexual selection involves two main mechanisms: intrasexual competition for mates and intersexual mate choice. We experimentally separated intrasexual (male–male interference competition) and intersexual (female choice) components of sexual selection in a freshwater fish, the European bitterling (Rhodeus sericeus). We compared the roles of multiple morphological and behavioural traits in male success in both components of sexual competition, and their relation to male reproductive success, measured as paternity of offspring. Body size was important for both female choice and male–male competition, though females also preferred males that courted more vigorously. However, dominant males often monopolized females regardless of female preference. Subordinate males were not excluded from reproduction and sired some offspring, possibly through sneaked ejaculations. Male dominance and a greater intensity of carotenoid‐based red colouration in their iris were the best predictors of male reproductive success. The extent of red iris colouration and parasite load did not have significant effects on female choice, male dominance or male reproductive success. No effect of parasite load on the expression of red eye colouration was detected, though this may have been due to low parasite prevalence in males overall. In conclusion, we showed that even though larger body size was favoured in both intersexual and intrasexual selection, male–male interference competition reduced opportunities for female choice. Females, despite being choosy, had limited control over the paternity of their offspring. Our study highlights the need for reliable measures of male reproductive success in studies of sexual selection.


PLOS ONE | 2015

Transcriptomic changes in coral holobionts provide insights into physiological challenges of future climate and ocean change

Paulina Kaniewska; Chon-Kit Kenneth Chan; David I. Kline; Edmund Y. S. Ling; Nedeljka N. Rosic; David Edwards; Ove Hoegh-Guldberg; Sophie Dove

Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.


The ISME Journal | 2015

Unfolding the secrets of coral–algal symbiosis

Nedeljka N. Rosic; Edmund Y. S. Ling; Chon-Kit Kenneth Chan; Hong Ching Lee; Paulina Kaniewska; David Edwards; Sophie Dove; Ove Hoegh-Guldberg

Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef-building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and <2% of sequences having bacterial or other foreign origin. We report 1053 genes, orthologous among four Symbiodinium clades, that share a high level of sequence identity to known proteins from the SwissProt (SP) database. Approximately 80% of the transcripts aligning to the 1053 SP genes were unique to Symbiodinium species and did not align to other dinoflagellates and unrelated eukaryotic transcriptomes/genomes. Six pathways were common to all four Symbiodinium clades including the phosphatidylinositol signaling system and inositol phosphate metabolism pathways. The list of Symbiodinium transcripts common to all four clades included conserved genes such as heat shock proteins (Hsp70 and Hsp90), calmodulin, actin and tubulin, several ribosomal, photosynthetic and cytochrome genes and chloroplast-based heme-containing cytochrome P450, involved in the biosynthesis of xanthophylls. Antioxidant genes, which are important in stress responses, were also preserved, as were a number of calcium-dependent and calcium/calmodulin-dependent protein kinases that may play a role in the establishment of symbiosis. Our findings disclose new knowledge about the genetic uniqueness of symbiotic dinoflagellates and provide a list of homologous genes important for the foundation of coral–algal symbiosis.


Journal of Phycology | 2011

IMPORTANCE OF MACRO- VERSUS MICROSTRUCTURE IN MODULATING LIGHT LEVELS INSIDE CORAL COLONIES(1).

Paulina Kaniewska; Sveinn H. Magnusson; Kenneth R. N. Anthony; Ruth Reef; Michael Kühl; Ove Hoegh-Guldberg

Adjusting the light exposure and capture of their symbiotic photosynthetic dinoflagellates (genus Symbiodinium Freud.) is central to the success of reef‐building corals (order Scleractinia) across high spatio‐temporal variation in the light environment of coral reefs. We tested the hypothesis that optical properties of tissues in some coral species can provide light management at the tissue scale comparable to light modulation by colony architecture in other species. We compared within‐tissue scalar irradiance in two coral species from the same light habitat but with contrasting colony growth forms: branching Stylophora pistillata and massive Lobophyllia corymbosa. Scalar irradiance at the level of the symbionts (2 mm into the coral tissues) were <10% of ambient irradiance and nearly identical for the two species, despite substantially different light environments at the tissue surface. In S. pistillata, light attenuation (90% relative to ambient) was observed predominantly at the colony level as a result of branch‐to‐branch self‐shading, while in L. corymbosa, near‐complete light attenuation (97% relative to ambient) was occurring due to tissue optical properties. The latter could be explained partly by differences in photosynthetic pigment content in the symbiont cells and pigmentation in the coral host tissue. Our results demonstrate that different strategies of light modulation at colony, polyp, and cellular levels by contrasting morphologies are equally effective in achieving favorable irradiances at the level of coral photosymbionts.


PLOS ONE | 2009

Coral skeletons defend against ultraviolet radiation.

Ruth Reef; Paulina Kaniewska; Ove Hoegh-Guldberg

Background Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage. Methodology/Principal Findings By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation. Conclusions/Significance Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life.


eLife | 2015

Signaling cascades and the importance of moonlight in coral broadcast mass spawning

Paulina Kaniewska; Shahar Alon; Sarit Karako-Lampert; Ove Hoegh-Guldberg; Oren Levy

Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earths most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules. DOI: http://dx.doi.org/10.7554/eLife.09991.001


The Journal of Experimental Biology | 2009

Phototropic growth in a reef flat acroporid branching coral species

Paulina Kaniewska; Paul R. Campbell; Maoz Fine; Ove Hoegh-Guldberg

SUMMARY Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development – the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 μmol m–2 s–1, below which axial corallites would not develop and this response was blue light (408–508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.


Molecular Biology and Evolution | 2017

A-to-I RNA Editing in the Earliest-Diverging Eumetazoan Phyla

Hagit T. Porath; Amos A. Schaffer; Paulina Kaniewska; Shahar Alon; Eli Eisenberg; Joshua J. C. Rosenthal; Erez Y. Levanon; Oren Levy

Abstract The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.

Collaboration


Dive into the Paulina Kaniewska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Dove

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chon-Kit Kenneth Chan

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Kenneth R. N. Anthony

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edmund Y. S. Ling

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Ruth Reef

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge