Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pauline Douglas is active.

Publication


Featured researches published by Pauline Douglas.


Molecular and Cellular Biology | 2003

Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair

Qi Ding; Yeturu V.R. Reddy; Wei Wang; Timothy Woods; Pauline Douglas; Dale A. Ramsden; Susan P. Lees-Miller; Katheryn Meek

ABSTRACT The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) may be critical for subsequent steps in DNA repair. Recently, we defined seven autophosphorylation sites within DNA-PKcs. Six of these are tightly clustered within 38 residues of the 4,127-residue protein. Here, we show that while phosphorylation at any single site within the major cluster is not critical for DNA-PKs function in vivo, mutation of several sites abolishes the ability of DNA-PK to function in NHEJ. This is not due to general defects in DNA-PK activity, as studies of the mutant protein indicate that its kinase activity and ability to form a complex with DNA-bound Ku remain largely unchanged. However, analysis of rare coding joints and ends demonstrates that nucleolytic end processing is dramatically reduced in joints mediated by the mutant DNA-PKcs. We therefore suggest that autophosphorylation within the major cluster mediates a conformational change in the DNA-PK complex that is critical for DNA end processing. However, autophosphorylation at these sites may not be sufficient for kinase disassembly.


The EMBO Journal | 2006

DNA‐PK autophosphorylation facilitates Artemis endonuclease activity

Aaron A. Goodarzi; Yaping Yu; Enriqueta Riballo; Pauline Douglas; Sarah A. Walker; Ruiqiong Ye; Christine J. Härer; Caterina Marchetti; Nick Morrice; Penny A. Jeggo; Susan P. Lees-Miller

The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double‐strand breaks (DSBs) in an ATM and DNA‐PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA‐PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) autophosphorylation at the T2609–T2647 cluster, in the presence of Ku and target DNA, is required for Artemis‐mediated endonuclease activity. Moreover, autophosphorylated DNA‐PKcs stably associates with Ku‐bound DNA with large single‐stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA‐PK that enhance Artemis cleavage at single‐strand to double‐strand DNA junctions. These findings demonstrate that DNA‐PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.


The EMBO Journal | 2004

Autophosphorylation of ataxia‐telangiectasia mutated is regulated by protein phosphatase 2A

Aaron A. Goodarzi; Jyoti C Jonnalagadda; Pauline Douglas; David B. Young; Ruiqiong Ye; Greg B. G. Moorhead; Susan P. Lees-Miller; Kum Kum Khanna

Ionizing radiation induces autophosphorylation of the ataxia‐telangiectasia mutated (ATM) protein kinase on serine 1981; however, the precise mechanisms that regulate ATM activation are not fully understood. Here, we show that the protein phosphatase inhibitor okadaic acid (OA) induces autophosphorylation of ATM on serine 1981 in unirradiated cells at concentrations that inhibit protein phosphatase 2A‐like activity in vitro. OA did not induce γ‐H2AX foci, suggesting that it induces ATM autophosphorylation by inactivation of a protein phosphatase rather than by inducing DNA double‐strand breaks. In support of this, we show that ATM interacts with the scaffolding (A) subunit of protein phosphatase 2A (PP2A), that the scaffolding and catalytic (C) subunits of PP2A interact with ATM in undamaged cells and that immunoprecipitates of ATM from undamaged cells contain PP2A‐like protein phosphatase activity. Moreover, we show that IR induces phosphorylation‐dependent dissociation of PP2A from ATM and loss of the associated protein phosphatase activity. We propose that PP2A plays an important role in the regulation of ATM autophosphorylation and activity in vivo.


Journal of Biological Chemistry | 2004

Doxorubicin Activates ATM-dependent Phosphorylation of Multiple Downstream Targets in Part through the Generation of Reactive Oxygen Species

Ebba U. Kurz; Pauline Douglas; Susan P. Lees-Miller

The requirement for the serine/threonine protein kinase ATM in coordinating the cellular response to DNA damage induced by ionizing radiation has been studied extensively. Many of the anti-tumor chemotherapeutics in clinical use today cause DNA double strand breaks; however, few have been evaluated for their ability to modulate ATM-mediated pathways. We have investigated the requirement for ATM in the cellular response to doxorubicin, a topoisomerase II-stabilizing drug. Using several ATM-proficient and ATM-deficient cell lines, we have observed ATM-dependent nuclear accumulation of p53 and ATM-dependent phosphorylation of p53 on seven serine residues. This was accompanied by an increased binding of p53 to its cognate binding site, suggesting transcriptional competency of p53 to activate its downstream effectors. Treatment of cells with doxorubicin led to the phosphorylation of histone H2AX on serine 139 with dependence on ATM for the initial response. Doxorubicin treatment also stimulated ATM autophosphorylation on serine 1981 and the ATM-dependent phosphorylation of numerous effectors in the ATM-signaling pathway, including Nbs1 (Ser343), SMC1 (Ser957), Chk1 (Ser317 and Ser345), and Chk2 (Ser33/35 and Thr68). Although generally classified as a topoisomerase II-stabilizing drug that induces DNA double strand breaks, doxorubicin can intercalate DNA and generate reactive oxygen species. Pretreatment of cells with the superoxide scavenger ascorbic acid had no effect on the doxorubicin-induced phosphorylation and accumulation of p53. In contrast, preincubation of cells with the hydroxyl radical scavenger, N-acetylcysteine, significantly attenuated the doxorubicin-mediated phosphorylation and accumulation of p53, p53-DNA binding, and the phosphorylation of H2AX, Nbs1, SMC1, Chk1, and Chk2, suggesting that hydroxyl radicals contribute to the doxorubicin-induced activation of ATM-dependent pathways.


Biochemical Journal | 2002

Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase.

Pauline Douglas; Gopal P. Sapkota; Nick Morrice; Yaping Yu; Aaron A. Goodarzi; Dennis Merkle; Katheryn Meek; Dario R. Alessi; Susan P. Lees-Miller

The DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs), such as those caused by ionizing radiation and other DNA-damaging agents. DNA-PK is composed of a large catalytic subunit (DNA-PKcs) and a heterodimer of Ku70 and Ku80 that assemble on the ends of double-stranded DNA to form an active serine/threonine protein kinase complex. Despite in vitro and in vivo evidence to support an essential role for the protein kinase activity of DNA-PK in the repair of DNA DSBs, the physiological targets of DNA-PK have remained elusive. We have previously shown that DNA-PK undergoes autophosphorylation in vitro, and that autophosphorylation correlates with loss of protein kinase activity and dissociation of the DNA-PK complex. Also, treatment of cells with the protein phosphatase inhibitor, okadaic acid, enhances DNA-PKcs phosphorylation and reduces DNA-PK activity in vivo. Here, using solid-phase protein sequencing, MS and phosphospecific antibodies, we have identified seven in vitro autophosphorylation sites in DNA-PKcs. Six of these sites (Thr2609, Ser2612, Thr2620, Ser2624, Thr2638 and Thr2647) are clustered in a region of 38 amino acids in the central region of the protein. Five of these sites (Thr2609, Ser2612, Thr2638, Thr2647 and Ser3205) are conserved between six vertebrate species. Moreover, we show that DNA-PKcs is phosphorylated in vivo at Thr2609, Ser2612, Thr2638 and Thr2647 in okadaic acid-treated human cells. We propose that phosphorylation of these sites may play an important role in DNA-PK function.


Molecular and Cellular Biology | 2007

trans Autophosphorylation at DNA-Dependent Protein Kinase's Two Major Autophosphorylation Site Clusters Facilitates End Processing but Not End Joining

Katheryn Meek; Pauline Douglas; Xiaoping Cui; Qi Ding; Susan P. Lees-Miller

ABSTRACT Recent studies have established that DNA-dependent protein kinase (DNA-PK) undergoes a series of autophosphorylation events that facilitate successful completion of nonhomologous DNA end joining. Autophosphorylation at sites in two distinct clusters regulates DNA end access to DNA end-processing factors and to other DNA repair pathways. Autophosphorylation within the kinases activation loop regulates kinase activity. Additional autophosphorylation events (as yet undefined) occur that mediate kinase dissociation. Here we provide the first evidence that autophosphorylation within the two major clusters (regulating end access) occurs in trans. Further, both UV-induced and double-strand break (DSB)-induced phosphorylation in the two major clusters is predominately autophosphorylation. Finally, we show that while autophosphorylation in trans on one of two synapsed DNA-PK complexes facilitates appropriate end processing, this is not sufficient to promote efficient end joining. This suggests that end joining in living cells requires additional phosphorylation events that either occur in cis or that occur on both sides of the DNA-PK synapse. These data support an emerging consensus that, via a series of autophosphorylation events, DNA-PK undergoes a sequence of conformational changes that promote efficient and appropriate repair of DSBs.


Molecular and Cellular Biology | 2007

The DNA-Dependent Protein Kinase Catalytic Subunit Is Phosphorylated In Vivo on Threonine 3950, a Highly Conserved Amino Acid in the Protein Kinase Domain

Pauline Douglas; Xiaoping Cui; Wesley D. Block; Yaping Yu; Shikha Gupta; Qi Ding; Ruiqiong Ye; Nick Morrice; Susan P. Lees-Miller; Katheryn Meek

ABSTRACT The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.


Molecular and Cellular Biology | 2011

Inhibition of Homologous Recombination by DNA-Dependent Protein Kinase Requires Kinase Activity, Is Titratable, and Is Modulated by Autophosphorylation

Jessica A. Neal; Van Dang; Pauline Douglas; Marc S. Wold; Susan P. Lees-Miller; Katheryn Meek

ABSTRACT How a cell chooses between nonhomologous end joining (NHEJ) and homologous recombination (HR) to repair a double-strand break (DSB) is a central and largely unanswered question. Although there is evidence of competition between HR and NHEJ, because of the DNA-dependent protein kinase (DNA-PK)s cellular abundance, it seems that there must be more to the repair pathway choice than direct competition. Both a mutational approach and chemical inhibition were utilized to address how DNA-PK affects HR. We find that DNA-PKs ability to repress HR is both titratable and entirely dependent on its enzymatic activity. Still, although requisite, robust enzymatic activity is not sufficient to inhibit HR. Emerging data (including the data presented here) document the functional complexities of DNA-PKs extensive phosphorylations that likely occur on more than 40 sites. Even more, we show here that certain phosphorylations of the DNA-PK large catalytic subunit (DNA-PKcs) clearly promote HR while inhibiting NHEJ, and we conclude that the phosphorylation status of DNA-PK impacts how a cell chooses to repair a DSB.


DNA Repair | 2008

DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks

Yaping Yu; Brandi L. Mahaney; Ken Ichi Yano; Ruiqiong Ye; Shujuan Fang; Pauline Douglas; David J. Chen; Susan P. Lees-Miller

Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo.


Bioscience Reports | 2014

Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

Pauline Douglas; Ruiqiong Ye; Laura Trinkle-Mulcahy; Jessica A. Neal; Veerle De Wever; Nick A. Morrice; Katheryn Meek; Susan P. Lees-Miller

The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

Collaboration


Dive into the Pauline Douglas's collaboration.

Top Co-Authors

Avatar

Susan P. Lees-Miller

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Katheryn Meek

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaping Yu

University of Calgary

View shared research outputs
Top Co-Authors

Avatar

Qi Ding

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kum Kum Khanna

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge