Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruiqiong Ye is active.

Publication


Featured researches published by Ruiqiong Ye.


The EMBO Journal | 2006

DNA‐PK autophosphorylation facilitates Artemis endonuclease activity

Aaron A. Goodarzi; Yaping Yu; Enriqueta Riballo; Pauline Douglas; Sarah A. Walker; Ruiqiong Ye; Christine J. Härer; Caterina Marchetti; Nick Morrice; Penny A. Jeggo; Susan P. Lees-Miller

The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double‐strand breaks (DSBs) in an ATM and DNA‐PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA‐PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) autophosphorylation at the T2609–T2647 cluster, in the presence of Ku and target DNA, is required for Artemis‐mediated endonuclease activity. Moreover, autophosphorylated DNA‐PKcs stably associates with Ku‐bound DNA with large single‐stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA‐PK that enhance Artemis cleavage at single‐strand to double‐strand DNA junctions. These findings demonstrate that DNA‐PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.


The EMBO Journal | 2004

Autophosphorylation of ataxia‐telangiectasia mutated is regulated by protein phosphatase 2A

Aaron A. Goodarzi; Jyoti C Jonnalagadda; Pauline Douglas; David B. Young; Ruiqiong Ye; Greg B. G. Moorhead; Susan P. Lees-Miller; Kum Kum Khanna

Ionizing radiation induces autophosphorylation of the ataxia‐telangiectasia mutated (ATM) protein kinase on serine 1981; however, the precise mechanisms that regulate ATM activation are not fully understood. Here, we show that the protein phosphatase inhibitor okadaic acid (OA) induces autophosphorylation of ATM on serine 1981 in unirradiated cells at concentrations that inhibit protein phosphatase 2A‐like activity in vitro. OA did not induce γ‐H2AX foci, suggesting that it induces ATM autophosphorylation by inactivation of a protein phosphatase rather than by inducing DNA double‐strand breaks. In support of this, we show that ATM interacts with the scaffolding (A) subunit of protein phosphatase 2A (PP2A), that the scaffolding and catalytic (C) subunits of PP2A interact with ATM in undamaged cells and that immunoprecipitates of ATM from undamaged cells contain PP2A‐like protein phosphatase activity. Moreover, we show that IR induces phosphorylation‐dependent dissociation of PP2A from ATM and loss of the associated protein phosphatase activity. We propose that PP2A plays an important role in the regulation of ATM autophosphorylation and activity in vivo.


Journal of Biological Chemistry | 2010

Ku and DNA-dependent Protein Kinase Dynamic Conformations and Assembly Regulate DNA Binding and the Initial Non-homologous End Joining Complex

Michal Hammel; Yaping Yu; Brandi L. Mahaney; Brandon Cai; Ruiqiong Ye; Barry M. Phipps; Robert P. Rambo; Greg L. Hura; Martin Pelikan; Sairei So; Ramin M. Abolfath; David J. Chen; Susan P. Lees-Miller; John A. Tainer

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.


Molecular and Cellular Biology | 2010

Protein Phosphatase 6 Interacts with the DNA-Dependent Protein Kinase Catalytic Subunit and Dephosphorylates γ-H2AX

Pauline Douglas; Jianing Zhong; Ruiqiong Ye; Greg B. G. Moorhead; Xingzhi Xu; Susan P. Lees-Miller

ABSTRACT The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G2/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (γ-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of γ-H2AX, the dissolution of IR-induced foci, and release from the G2/M checkpoint in vivo.


DNA Repair | 2003

DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination.

Yaping Yu; Wei Wang; Qi Ding; Ruiqiong Ye; Dawn Chen; Dennis Merkle; David C. Schriemer; Katheryn Meek; Susan P. Lees-Miller

Nonhomologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks (DSBs) in higher eukaryotes. Several proteins, including the DNA-dependent protein kinase (DNA-PK), XRCC4 and DNA ligase IV, are required for nonhomologous end joining both in vitro and in vivo. Since XRCC4 is recruited to the DNA double-strand break with DNA-PK, and because the protein kinase activity of DNA-PK is required for its in vivo function, we reasoned that XRCC4 could be a potential physiological substrate of DNA-PK. Here, we have used mass spectrometry to map the DNA-PK phosphorylation sites in XRCC4. Two major phosphorylation sites (serines 260 and 318), as well as several minor sites were identified. All of the identified sites lie within the carboxy-terminal 100 amino acids of XRCC4. Substitution of each of these sites to alanine (in combination) reduced the ability of DNA-PK to phosphorylate XRCC4 in vitro by at least two orders of magnitude. However, XRCC4-deficient cells that were complemented with XRCC4 lacking DNA-PK phosphorylation sites were analogous to wild type XRCC4 with respect to survival after ionizing radiation and ability to repair DSBs introduced during V(D)J recombination.


Molecular and Cellular Biology | 2007

The DNA-Dependent Protein Kinase Catalytic Subunit Is Phosphorylated In Vivo on Threonine 3950, a Highly Conserved Amino Acid in the Protein Kinase Domain

Pauline Douglas; Xiaoping Cui; Wesley D. Block; Yaping Yu; Shikha Gupta; Qi Ding; Ruiqiong Ye; Nick Morrice; Susan P. Lees-Miller; Katheryn Meek

ABSTRACT The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.


Journal of Biological Chemistry | 2001

The plant isoflavenoid genistein activates p53 and Chk2 in an ATM-dependent manner

Ruiqiong Ye; Amanda Bodero; Bin-Bing Zhou; Kum Kum Khanna; Martin F. Lavin; Susan P. Lees-Miller

Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.


Embo Molecular Medicine | 2012

Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53

Chris T. Williamson; Eiji Kubota; Jeffrey D. Hamill; Alexander C. Klimowicz; Ruiqiong Ye; Huong Muzik; Michelle Dean; LiRen Tu; David Gilley; Anthony M. Magliocco; Bruce C. McKay; D. Gwyn Bebb; Susan P. Lees-Miller

Poly‐ADP ribose polymerase (PARP) inhibitors have shown promise in the treatment of human malignancies characterized by deficiencies in the DNA damage repair proteins BRCA1 and BRCA2 and preclinical studies have demonstrated the potential effectiveness of PARP inhibitors in targeting ataxia‐telangiectasia mutated (ATM)‐deficient tumours. Here, we show that mantle cell lymphoma (MCL) cells deficient in both ATM and p53 are more sensitive to the PARP inhibitor olaparib than cells lacking ATM function alone. In ATM‐deficient MCL cells, olaparib induced DNA‐PK‐dependent phosphorylation and stabilization of p53 as well as expression of p53‐responsive cell cycle checkpoint regulators, and inhibition of DNA‐PK reduced the toxicity of olaparib in ATM‐deficient MCL cells. Thus, both DNA‐PK and p53 regulate the response of ATM‐deficient MCL cells to olaparib. In addition, small molecule inhibition of both ATM and PARP was cytotoxic in normal human fibroblasts with disruption of p53, implying that the combination of ATM and PARP inhibitors may have utility in targeting p53‐deficient malignancies.


Cancer Research | 2005

Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM.

Yuanlin Peng; Rick Woods; Heather Beamish; Ruiqiong Ye; Susan P. Lees-Miller; Martin F. Lavin; Joel S. Bedford

Previous reports have suggested a connection between reduced levels of the catalytic subunit of DNA-dependent protein kinases (DNA-PKcs), a component of the nonhomologous DNA double-strand breaks end-joining system, and a reduction in ATM. We studied this possible connection in other DNA-PKcs-deficient cell types, and following knockdown of DNA-PKcs with small interfering RNA, Chinese hamster ovary V3 cells, lacking DNA-PKcs, had reduced levels of ATM and hSMG-1, but both were restored after transfection with PRKDC. Atm levels were also reduced in murine scid cells. Reduction of ATM in a human glioma cell line lacking DNA-PKcs was accompanied by defective signaling through downstream substrates, post-irradiation. A large reduction of DNA-PKcs was achieved in normal human fibroblasts after transfection with two DNA-PKcs small interfering RNA sequences. This was accompanied by a reduction in ATM. These data were confirmed using immunocytochemical detection of the proteins. Within hours after transfection, a decline in PRKDC mRNA was seen, followed by a more gradual decline in DNA-PKcs protein beginning 1 day after transfection. No change in ATM mRNA was observed for 2 days post-transfection. Only after the DNA-PKcs reduction occurred was a reduction in ATM mRNA observed, beginning 2 days post-transfection. The amount of ATM began to decline, starting about 3 days post-treatment, then it declined to levels comparable to DNA-PKcs. Both proteins returned to normal levels at later times. These data illustrate a potentially important cross-regulation between the nonhomologous end-joining system for rejoining of DNA double-strand breaks and the ATM-dependent damage response network of pathways, both of which operate to maintain the integrity of the genome.


DNA Repair | 2008

DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks

Yaping Yu; Brandi L. Mahaney; Ken Ichi Yano; Ruiqiong Ye; Shujuan Fang; Pauline Douglas; David J. Chen; Susan P. Lees-Miller

Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo.

Collaboration


Dive into the Ruiqiong Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaping Yu

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kum Kum Khanna

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Katheryn Meek

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jianing Zhong

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Xingzhi Xu

Capital Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge