Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo W. Pires is active.

Publication


Featured researches published by Paulo W. Pires.


Nature Medicine | 2012

Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors

Amy McCurley; Paulo W. Pires; Shawn B. Bender; Mark Aronovitz; Michelle J Zhao; Daniel Metzger; Pierre Chambon; Michael A. Hill; Anne M. Dorrance; Michael Mendelsohn; Iris Z. Jaffe

Hypertension is a cardiovascular risk factor present in over two-thirds of people over age 60 in North America; elevated blood pressure correlates with increased risk of heart attack, stroke and progression to heart and kidney failure. Current therapies are insufficient to control blood pressure in almost half of these patients. The mineralocorticoid receptor (MR), acting in the kidney, is known to regulate blood pressure through aldosterone binding and stimulation of sodium retention. However, recent studies support the concept that the MR also has extrarenal actions and that defects in sodium handling alone do not fully explain the development of hypertension and associated cardiovascular mortality. We and others have identified functional MR in human vascular smooth muscle cells (SMCs), suggesting that vascular MR might directly regulate blood pressure. Here we show that mice with SMC-specific deficiency of the MR have decreased blood pressure as they age without defects in renal sodium handling or vascular structure. Aged mice lacking MR in SMCs (SMC-MR) have reduced vascular myogenic tone, agonist-dependent contraction and expression and activity of L-type calcium channels. Moreover, SMC-MR contributes to angiotensin II–induced vascular oxidative stress, vascular contraction and hypertension. This study identifies a new role for vascular MR in blood pressure control and in vascular aging and supports the emerging hypothesis that vascular tone contributes directly to systemic blood pressure.


American Journal of Physiology-heart and Circulatory Physiology | 2013

The effects of hypertension on the cerebral circulation.

Paulo W. Pires; Carla M. Dams Ramos; Nusrat Matin; Anne M. Dorrance

Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats.

Paulo W. Pires; Curt Thomas Rogers; Jonathon L. McClain; Hannah Garver; Gregory D. Fink; Anne M. Dorrance

Matrix metalloproteases (MMPs) are a family of zinc peptidases involved in extracellular matrix turnover. There is evidence that increased MMP activity is involved in remodeling of resistance vessels in chronic hypertension. Thus we hypothesized that inhibition of MMP activity with doxycycline (DOX) would attenuate vascular remodeling. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with DOX (50 mg·kg(-1)·day(-1) in the drinking water) for 6 wk. Untreated SHRSP were controls. Blood pressure was measured by telemetry during the last week. Middle cerebral artery (MCA) and mesenteric resistance artery (MRA) passive structures were assessed by pressure myography. MMP-2 expression in aortas was measured by Western blot. All results are means ± SE. DOX caused a small increase in mean arterial pressure (SHRSP, 154 ± 1; SHRSP + DOX, 159 ± 3 mmHg; P < 0.001). Active MMP-2 expression was reduced in aorta from SHRSP + DOX (0.21 ± 0.06 vs. 0.49 ± 0.13 arbitrary units; P < 0.05). In the MCA, at 80 mmHg, DOX treatment increased the lumen (273.2 ± 4.7 vs. 238.3 ± 6.3 μm; P < 0.05) and the outer diameter (321 ± 5.3 vs. 290 ± 7.6 μm; P < 0.05) and reduced the wall-to-lumen ratio (0.09 ± 0.002 vs. 0.11 ± 0.003; P < 0.05). Damage after transient cerebral ischemia (transient MCA occlusion) was reduced in SHRSP + DOX (20.7 ± 4 vs. 45.5 ± 5% of hemisphere infarcted; P < 0.05). In the MRA, at 90 mmHg DOX, reduced wall thickness (29 ± 1 vs. 22 ± 1 μm; P < 0.001) and wall-to-lumen ratio (0.08 ± 0.004 vs. 0.11 ± 0.008; P < 0.05) without changing lumen diameter. These results suggest that MMPs are involved in hypertensive vascular remodeling in both the peripheral and cerebral vasculature and that DOX reduced brain damage after cerebral ischemia.


Science Signaling | 2015

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation

Michelle N. Sullivan; Albert L. Gonzales; Paulo W. Pires; Allison Bruhl; M. Dennis Leo; Wencheng Li; Agathe Oulidi; Frederick A. Boop; Yumei Feng; Jonathan H. Jaggar; Donald G. Welsh; Scott Earley

Peroxidized lipid metabolites trigger calcium influx through the channel TRPA1 to dilate cerebral arteries. Blood Vessel Dilation with Peroxidized Lipids Cerebral arteries must maintain constant blood flow to the brain even though blood pressure fluctuates constantly. Sullivan et al. characterized a signaling pathway that is specific to the endothelial cells that line cerebral arteries. Reactive oxygen species (ROS) cause lipid peroxidation. In endothelial cells in cerebral arteries, locally produced ROS oxidized lipids, which triggered calcium influx through the ion channel TRPA1. In turn, this calcium influx activated a potassium-permeable channel, resulting in dilation of cerebral arteries. Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca2+ signals representing Ca2+ influx through single TRPA1 channels, which we called “TRPA1 sparklets.” TRPA1 sparklet activity was low under basal conditions but was stimulated by NOX-generated ROS. Ca2+ entry during a single TRPA1 sparklet was twice that of a TRPV4 sparklet and ~200 times that of an L-type Ca2+ channel sparklet. TRPA1 sparklets representing the simultaneous opening of two TRPA1 channels were more common in endothelial cells than in human embryonic kidney (HEK) 293 cells expressing TRPA1. The NOX-induced TRPA1 sparklets activated intermediate-conductance, Ca2+-sensitive K+ channels, resulting in smooth muscle hyperpolarization and vasodilation. NOX-induced activation of TRPA1 sparklets and vasodilation required generation of hydrogen peroxide and lipid-peroxidizing hydroxyl radicals as intermediates. 4-Hydroxy-nonenal, a metabolite of lipid peroxidation, also increased TRPA1 sparklet frequency and dilated cerebral arteries. These data suggest that in the cerebral circulation, lipid peroxidation metabolites generated by ROS activate Ca2+ influx through TRPA1 channels in the endothelium of cerebral arteries to cause dilation.


Microvascular Research | 2010

Tempol, a superoxide dismutase mimetic, prevents cerebral vessel remodeling in hypertensive rats

Paulo W. Pires; Christian Deutsch; Jonathon L. McClain; Curt Thomas Rogers; Anne M. Dorrance

Increased reactive oxygen species (ROS) production is involved in the pathogenesis of hypertension and stroke. The effects of ROS on cerebral vessels from hypertensive rats have not been studied. We hypothesized that tempol, a superoxide dismutase mimetic, would prevent middle cerebral artery (MCA) remodeling in stroke-prone spontaneously hypertensive rats (SHRSP). Six-week-old male SHRSP were treated with tempol (1mM) for 6weeks. The MCA was then removed and mounted in a pressure myograph to study tone generation, vessel reactivity, and passive vessel structure. Data are shown as mean±SEM, tempol vs. control. Plasma thiobarbituric acid reactive substances (TBARS) were decreased by tempol treatment (14.15±1.46 vs. 20.55±1.25nM of malondialdehyde [MDA]/ml, p=0.008). Maximum serotonin-induced constriction was increased by tempol treatment, without changes in dilation to adenosine diphosphate or tone generation. At an intralumenal pressure of 80mmHg, tempol caused a dramatic increase in the MCA lumen diameter (246±5 vs. 207±3μm, p<0.001), outer diameter (281±5 vs. 241±3μm, p<0.001), lumen cross-sectional area, and vessel cross-sectional area. Collagen IV mRNA expressions were increased by 2.4-fold after tempol treatment. These results suggest that ROS are involved in the remodeling of the cerebral vasculature of SHRSP and that ROS scavenging can attenuate this process.


Microcirculation | 2013

Improvement in middle cerebral artery structure and endothelial function in stroke-prone spontaneously hypertensive rats after macrophage depletion

Paulo W. Pires; Saavia Singh Girgla; Jonathon L. McClain; Norbert E. Kaminski; Nico van Rooijen; Anne M. Dorrance

Inflammation is involved in the pathogenesis of hypertension. Hypertensive animals have an increased number of perivascular macrophages in cerebral arteries. Macrophages might be involved in remodeling of the cerebral vasculature. We hypothesized that peripheral macrophage depletion would improve MCA structure and function in hypertensive rats.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles

Paulo W. Pires; Michelle N. Sullivan; Harry A. T. Pritchard; Jennifer Robinson; Scott Earley

Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca(2+) permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca(2+) influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca(2+) influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca(2+)-activated K(+) (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium.


Endocrinology | 2012

The Development of Hypertension and Hyperaldosteronism in a Rodent Model of Life-Long Obesity

Carrie A. Northcott; Greg D. Fink; Hannah Garver; Joseph R. Haywood; Erinn L. Laimon-Thomson; Jonathon L. McClain; Paulo W. Pires; William E. Rainey; Christiné S. Rigsby; Anne M. Dorrance

Aldosterone has been linked to the deleterious cardiovascular effects of obesity in humans. The association of aldosterone with obesity in rodents is less well defined, particularly in models of diet-induced obesity. We hypothesized that adrenal aldosterone production and aldosterone synthase expression would be increased in rats with obesity-induced hypertension. Male Sprague Dawley rats were fed a high-fat (HF: 36% fat) or control diet from 3 wk of age, and mean arterial pressure (MAP) was measured by telemetry. MAP was increased after 4 wk of HF diet; this was 6 wk before changes in body weight. Mineralocorticoid receptor antagonism did not prevent the HF-induced increase in MAP. After 17 wk on the diets, HF rats had increased body and fat weights (abdominal and epididymal) and were insulin resistant (Homeostasis Model Assessment index: 3.53 ± 0.43 vs. 8.52 ± 1.77; control vs. HF, P < 0.05). Plasma aldosterone levels were increased in the HF rats (64.14 ± 14.96 vs. 206.25 ± 47.55 pg/ml; control vs. HF, P < 0.05). This occurred independently of plasma renin activity (4.8 ± 0.92 vs. 4.73 ± 0.66 ng/ml/h, control vs. HF). The increase in aldosterone was accompanied by a 2-fold increase in adrenal aldosterone synthase mRNA expression and zona glomerulosa hypertrophy. Rats were also studied after 8 wk of HF diet, a time when MAP, but not body weight, was increased. At this time plasma aldosterone was unchanged but plasma renin activity was increased (4.4 ± 0.5 vs. 8.1 ± 1.3 ng/ml/h; control vs. HF, P < 0.05). These studies suggest that rats fed a HF diet from weaning may be a useful model for studying obesity-associated hyperaldosteronism.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats

Paulo W. Pires; Saavia Singh Girgla; Guillermo Moreno; Jonathon L. McClain; Anne M. Dorrance

Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg(-1)·day(-1) ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.


Current Vascular Pharmacology | 2014

The effects of obesity on the cerebral vasculature.

Anne M. Dorrance; Nusrat Matin; Paulo W. Pires

The incidence of obesity in the population is increasing at an alarming rate, with this comes an increased risk of insulin resistance (IR). Obesity and IR increase an individuals risk of having a stroke and they have been linked to several forms of dementia. Stroke and dementia are associated with, or exacerbated by, reduced cerebral blood flow, which has recently been described in obese patients. In this review we will discuss the effects of obesity on cerebral artery function and structure. Regarding their function, we will focus on the endothelium and nitric oxide (NO) dependent dilation. NO dependent dilation is impaired in cerebral arteries from obese rats, and the majority of evidence suggests this is a result of increased oxidative stress. We will also describe the limited studies showing that inward cerebral artery remodeling occurs in models of obesity, and that the remodeling is associated with an increase in the damage caused by cerebral ischemia. We will also discuss some of the more paradoxical findings associated with stroke and obesity, including the evidence that obesity is a positive factor for stroke survival. Finally we will discuss the evidence that links these changes in vascular structure and function to cognitive decline and dementia.

Collaboration


Dive into the Paulo W. Pires's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Garver

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nusrat Matin

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge