Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle N. Sullivan is active.

Publication


Featured researches published by Michelle N. Sullivan.


Science Signaling | 2015

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation

Michelle N. Sullivan; Albert L. Gonzales; Paulo W. Pires; Allison Bruhl; M. Dennis Leo; Wencheng Li; Agathe Oulidi; Frederick A. Boop; Yumei Feng; Jonathan H. Jaggar; Donald G. Welsh; Scott Earley

Peroxidized lipid metabolites trigger calcium influx through the channel TRPA1 to dilate cerebral arteries. Blood Vessel Dilation with Peroxidized Lipids Cerebral arteries must maintain constant blood flow to the brain even though blood pressure fluctuates constantly. Sullivan et al. characterized a signaling pathway that is specific to the endothelial cells that line cerebral arteries. Reactive oxygen species (ROS) cause lipid peroxidation. In endothelial cells in cerebral arteries, locally produced ROS oxidized lipids, which triggered calcium influx through the ion channel TRPA1. In turn, this calcium influx activated a potassium-permeable channel, resulting in dilation of cerebral arteries. Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca2+ signals representing Ca2+ influx through single TRPA1 channels, which we called “TRPA1 sparklets.” TRPA1 sparklet activity was low under basal conditions but was stimulated by NOX-generated ROS. Ca2+ entry during a single TRPA1 sparklet was twice that of a TRPV4 sparklet and ~200 times that of an L-type Ca2+ channel sparklet. TRPA1 sparklets representing the simultaneous opening of two TRPA1 channels were more common in endothelial cells than in human embryonic kidney (HEK) 293 cells expressing TRPA1. The NOX-induced TRPA1 sparklets activated intermediate-conductance, Ca2+-sensitive K+ channels, resulting in smooth muscle hyperpolarization and vasodilation. NOX-induced activation of TRPA1 sparklets and vasodilation required generation of hydrogen peroxide and lipid-peroxidizing hydroxyl radicals as intermediates. 4-Hydroxy-nonenal, a metabolite of lipid peroxidation, also increased TRPA1 sparklet frequency and dilated cerebral arteries. These data suggest that in the cerebral circulation, lipid peroxidation metabolites generated by ROS activate Ca2+ influx through TRPA1 channels in the endothelium of cerebral arteries to cause dilation.


Hypertension | 2014

Neuron-Specific (Pro)renin Receptor Knockout Prevents the Development of Salt-Sensitive Hypertension

Wencheng Li; Hua Peng; Eamonn P. Mehaffey; Christie D. Kimball; Justin L. Grobe; Jeanette M.G. van Gool; Michelle N. Sullivan; Scott Earley; A.H. Jan Danser; Atsuhiro Ichihara; Yumei Feng

The (pro)renin receptor (PRR), which binds both renin and prorenin, is a newly discovered component of the renin–angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, nonproteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate-salt–induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. PRR expression, detected by immunostaining and reverse transcription–polymerase chain reaction, was significantly decreased in the brains of knockout mice compared with wild-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild-type mice. This hypertensive response was abolished in PRR-knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate-salt increased PRR expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in PRR-knockout mice. PRR knockout in neurons prevented the development of deoxycorticosterone acetate-salt–induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, nonproteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate-salt–induced hypertension, possibly through diminished angiotensin II formation.


Science Signaling | 2014

A PLCγ1-Dependent, Force-Sensitive Signaling Network in the Myogenic Constriction of Cerebral Arteries

Albert L. Gonzales; Ying Yang; Michelle N. Sullivan; Lindsey Sanders; Fabrice Dabertrand; David C. Hill-Eubanks; Mark T. Nelson; Scott Earley

The signaling pathway that links the sensing of increased blood pressure to constriction in cerebral arteries is delineated. Maintaining Blood Flow to the Brain Cerebral arteries continually adjust to changes in blood pressure to ensure constant blood flow to the brain. In response to increased blood pressure, the smooth muscle cells in cerebral arteries contract, resulting in blood vessel constriction. This response requires two cell surface ion channels—TRPC6, a channel that is activated by the stretch caused by increased blood pressure, and TRPM4, a channel that triggers the electrical impulses necessary for blood vessel constriction. Gonzales et al. found that activation of TRPC6 stimulated TRPM4 through calcium-dependent pathways. TRPC6, TRPM4, and the enzyme PLCγ1 were located in close proximity to each other in smooth muscle cells, indicating that a pressure-sensitive signaling network keeps blood flowing in the brain. Maintaining constant blood flow in the face of fluctuations in blood pressure is a critical autoregulatory feature of cerebral arteries. An increase in pressure within the artery lumen causes the vessel to constrict through depolarization and contraction of the encircling smooth muscle cells. This pressure-sensing mechanism involves activation of two types of transient receptor potential (TRP) channels: TRPC6 and TRPM4. We provide evidence that the activation of the γ1 isoform of phospholipase C (PLCγ1) is critical for pressure sensing in cerebral arteries. Inositol 1,4,5-trisphosphate (IP3), generated by PLCγ1 in response to pressure, sensitized IP3 receptors (IP3Rs) to Ca2+ influx mediated by the mechanosensitive TRPC6 channel, synergistically increasing IP3R-mediated Ca2+ release to activate TRPM4 currents, leading to smooth muscle depolarization and constriction of isolated cerebral arteries. Proximity ligation assays demonstrated colocalization of PLCγ1 and TRPC6 with TRPM4, suggesting the presence of a force-sensitive, local signaling network comprising PLCγ1, TRPC6, TRPM4, and IP3Rs. Src tyrosine kinase activity was necessary for stretch-induced TRPM4 activation and myogenic constriction, consistent with the ability of Src to activate PLCγ isoforms. We conclude that contraction of cerebral artery smooth muscle cells requires the integration of pressure-sensing signaling pathways and their convergence on IP3Rs, which mediate localized Ca2+-dependent depolarization through the activation of TRPM4.


Hypertension | 2015

Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate-Salt–Induced Hypertension

Wencheng Li; Michelle N. Sullivan; Sheng Zhang; Caleb J. Worker; Zhenggang Xiong; Robert C. Speth; Yumei Feng

We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT1 receptor–dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension.


Molecular Pharmacology | 2012

Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells.

Michelle N. Sullivan; Michael M. Francis; Natalie L. Pitts; Mark S. Taylor; Scott Earley

Critical functions of the vascular endothelium are regulated by changes in intracellular [Ca2+]. Endothelial dysfunction is tightly associated with cardiovascular disease, and improved understanding of Ca2+ entry pathways in these cells will have a significant impact on human health. However, much about Ca2+ influx channels in endothelial cells remains unknown because they are difficult to study using conventional patch-clamp electrophysiology. Here we describe a novel, highly efficient method for recording and analyzing Ca2+-permeable channel activity in primary human endothelial cells using a unique combination of total internal reflection fluorescence microscopy (TIRFM), custom software-based detection, and selective pharmacology. Our findings indicate that activity of the vanilloid (V) transient receptor potential (TRP) channel TRPV4 can be rapidly recorded and characterized at the single-channel level using this method, providing novel insight into channel function. Using this method, we show that although TRPV4 protein is evenly distributed throughout the plasma membrane, most channels are silent even during maximal stimulation with the potent TRPV4 agonist N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A). Furthermore, our findings indicate that GSK1016790A acts by recruiting previously inactive channels, rather than through increasing elevation of basal activity.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles

Paulo W. Pires; Michelle N. Sullivan; Harry A. T. Pritchard; Jennifer Robinson; Scott Earley

Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca(2+) permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca(2+) influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca(2+) influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca(2+)-activated K(+) (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium.


PLOS ONE | 2013

Robust internal elastic lamina fenestration in skeletal muscle arteries.

Brett S. Kirby; Allison Bruhl; Michelle N. Sullivan; Michael Francis; Frank A. Dinenno; Scott Earley

Holes within the internal elastic lamina (IEL) of blood vessels are sites of fenestration allowing for passage of diffusible vasoactive substances and interface of endothelial cell membrane projections with underlying vascular smooth muscle. Endothelial projections are sites of dynamic Ca2+ events leading to endothelium dependent hyperpolarization (EDH)-mediated relaxations and the activity of these events increase as vessel diameter decreases. We tested the hypothesis that IEL fenestration is greater in distal vs. proximal arteries in skeletal muscle, and is unlike other vascular beds (mesentery). We also determined ion channel protein composition within the endothelium of intramuscular and non-intramuscular skeletal muscle arteries. Popliteal arteries, subsequent gastrocnemius feed arteries, and first and second order intramuscular arterioles from rat hindlimb were isolated, cut longitudinally, fixed, and imaged using confocal microscopy. Quantitative analysis revealed a significantly larger total fenestration area in second and first order arterioles vs. feed and popliteal arteries (58% and 16% vs. 5% and 3%; N = 10 images/artery), due to a noticeably greater average size of holes (9.5 and 3.9 µm2 vs 1.5 and 1.9 µm2). Next, we investigated via immunolabeling procedures whether proteins involved in EDH often embedded in endothelial cell projections were disparate between arterial segments. Specific proteins involved in EDH, such as inositol trisphosphate receptors, small and intermediate conductance Ca2+-activated K+ channels, and the canonical (C) transient receptor potential (TRP) channel TRPC3 were present in both popliteal and first order intramuscular arterioles. However due to larger IEL fenestration in first order arterioles, a larger spanning area of EDH proteins is observed proximal to the smooth muscle cell plasma membrane. These observations highlight the robust area of fenestration within intramuscular arterioles and indicate that the anatomical architecture and endothelial cell hyperpolarizing apparatus for distinct vasodilatory signaling is potentially present.


Channels | 2013

Control of urinary bladder smooth muscle excitability by the TRPM4 channel modulator 9-phenanthrol

Shankar P. Parajuli; Kiril L. Hristov; Michelle N. Sullivan; Wenkuan Xin; Amy Smith; Scott Earley; John Malysz; Georgi V. Petkov

The Ca2+-activated monovalent cation selective transient receptor potential melastatin 4 (TRPM4) channel has been recently identified in detrusor smooth muscle (DSM) of the urinary bladder. Two recent publications by our research group provide evidence in support of the novel hypothesis that TRPM4 channels enhance DSM excitability and contractility. This is a critical question as prior studies have primarily targeted hyperpolarizing currents facilitated by K+ channels, but the depolarizing component in DSM cells is not well understood. For the first time, we utilized the selective TRPM4 channel inhibitor, 9-phenanthrol, to investigate TRPM4 channel functional effects in DSM at both cellular and tissue levels in rodents. Our new data presented here showed that in rat DSM cells, 9-phenanthrol attenuates spontaneous inward currents in the presence of the muscarinic receptor agonist, carbachol, thus reducing DSM cell excitability. In support of our original hypothesis, we found that TRPM4 channel mRNA levels are much higher in DSM vs. vascular smooth muscle and that inhibition of TRPM4 channels can potentially attenuate DSM excitability. Thus, we postulate the novel concept that selective pharmacological inhibition of TRPM4 channels can limit both excitability and contractility of DSM.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system

Hua Peng; Dane D. Jensen; Wencheng Li; Michelle N. Sullivan; Sophie A. Buller; Caleb J. Worker; Silvana G. Cooper; Shiqi Zheng; Scott Earley; Curt D. Sigmund; Yumei Feng

Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.


American Journal of Physiology-cell Physiology | 2013

TRP channel Ca(2+) sparklets: fundamental signals underlying endothelium-dependent hyperpolarization.

Michelle N. Sullivan; Scott Earley

Collaboration


Dive into the Michelle N. Sullivan's collaboration.

Top Co-Authors

Avatar

Scott Earley

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison Bruhl

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett S. Kirby

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge