Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulraj Rajamani is active.

Publication


Featured researches published by Paulraj Rajamani.


Mutation Research-reviews in Mutation Research | 2011

Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy

Dhanya K. Nambiar; Paulraj Rajamani; Rana P. Singh

Ionizing radiation (IR)-induced cellular damage is implicated in carcinogenesis as well as therapy of cancer. Advances in radiation therapy have led to the decrease in dosage and localizing the effects to the tumor; however, the development of radioresistance in cancer cells and radiation toxicity to normal tissues are still the major concerns. The development of radioresistance involves several mechanisms, including the activation of mitogenic and survival signaling, induction of DNA repair, and changes in redox signaling and epigenetic regulation. The current strategy of combining radiation with standard cytotoxic chemotherapeutic agents can potentially lead to unwanted side effects due to both agents. Thus agents are needed that could improve the efficacy of radiation killing of cancer cells and prevent the damage to normal cells and tissues caused by the direct and bystander effects of radiation, without have its own systemic toxicity. Chemopreventive phytochemicals, usually non-toxic agents with both cancer preventive and therapeutic activities, could rightly fit in this approach. In this regard, naturally occurring compounds, including curcumin, parthenolide, genistein, gossypol, ellagic acid, withaferin, plumbagin and resveratrol, have shown considerable potential. These agents suppress the radiation-induced activation of receptor tyrosine kinases and nuclear factor-κB signaling, can modify cell survival and DNA repair efficacy, and may potentiate ceramide signaling. These radiosensitizing and counter radioresistance mechanisms of phytochemicals in cancer cells are also associated with changes in epigenetic gene regulation. Because radioresistance involves multiple mechanisms, more studies are needed to discover novel phytochemicals having multiple mechanisms of radiosensitization and to overcome radioresistance of cancer cells. Pre-clinical studies are needed to address the appropriate dosage, timing, and duration of the application of phytochemicals with radiation to justify clinical trials. Nonetheless, some phytochemicals in combination with IR may play a significant role in enhancing the therapeutic index of cancer treatment.


Applied Biochemistry and Biotechnology | 2012

Nano-TiO2-Induced Apoptosis by Oxidative Stress-Mediated DNA Damage and Activation of p53 in Human Embryonic Kidney Cells

Ramovatar Meena; Madhu Rani; Ruchita Pal; Paulraj Rajamani

The aim of the present study is to explore the mechanism of cytotoxic and genotoxic effects of TiO2 nanoparticles on human embryonic kidney (HEK-293) cells. Toxicity was evaluated using changes in various cellular parameters of HEK-293 cells like morphology, viability, metabolic activity, oxidative stress and apoptosis. Oxidative stress was measured by the level of reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase. Apoptosis induced by nano-TiO2 was characterized by PI staining and DNA ladder assay. Furthermore, apoptotic proteins such as p53 and Bax were analysed by western blot. Our results indicate that nano-TiO2 induces cytotoxicity in a time- and dose-dependent manner. Oxidative stress and apoptosis were induced by exposure to nano-TiO2. Moreover, the expression of p53, Bax and caspase-3 were increased in a dose-dependent pattern. In conclusion, ROS-mediated oxidative stress, the activation of p53, Bax, caspase-3 and oxidative DNA damage are involved in the mechanistic pathways of nano-TiO2-induced apoptosis in HEK-293 cells.


Biochemical and Biophysical Research Communications | 2015

Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

Dhanya K. Nambiar; Paulraj Rajamani; Rana P. Singh

Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p<0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic (VEGF, iNOS), migratory (MMP-2) and EMT promoting proteins (uPA, vimentin, N-cadherin) were up-regulated by IR in PCa cells. Interestingly, all of these invasive and EMT promoting actions of IR were markedly decreased by silibinin. Further, we found that potentiated effect was an end result of attenuation of IR-activated mitogenic and pro-survival signaling, including Akt, Erk1/2 and STAT-3, by silibinin.


Electromagnetic Biology and Medicine | 2014

Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats.

Ramovatar Meena; Kajal Kumari; Jitendra Kumar; Paulraj Rajamani; H. N. Verma; Kavindra Kumar Kesari

Abstract Microwave (MW) radiation produced by wireless telecommunications and a number of electrical devices used in household or in healthcare institutions may adversely affects the reproductive pattern. Present study aimed to investigate the protective effects of melatonin (is well known antioxidant that protects DNA, lipids and proteins from free radical damage) against oxidative stress-mediated testicular impairment due to long-term exposure of MWs. For this, 70-day-old male Wistar rats were divided into four groups (n = 6/group): Sham exposed, Melatonin (Mel) treated (2 mg/kg), 2.45 GHz MWs exposed and MWs + Mel treated. Exposure took place in Plexiglas cages for 2 h a day for 45 days where, power density (0.21 mW/cm2) and specific absorption rate (SAR 0.14 W/Kg) were estimated. After the completion of exposure period, rats were sacrificed and various stress related parameters, that is LDH-X (lactate dehydrogenase isoenzyme) activity, xanthine oxidase (XO), ROS (reactive oxygen species), protein carbonyl content, DNA damage and MDA (malondialdehyde) were performed. Result shows that melatonin prevent oxidative damage biochemically by significant increase (p < 0.001) in the levels of testicular LDH-X, decreased (p < 0.001) levels of MDA and ROS in testis (p < 0.01). Meanwhile, it reversed the effects of MWs on XO, protein carbonyl content, sperm count, testosterone level and DNA fragmentation in testicular cells. These results concluded that the melatonin has strong antioxidative potential against MW induced oxidative stress mediated DNA damage in testicular cells.


Molecular Cancer Therapeutics | 2015

Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling

Dhanya K. Nambiar; Paulraj Rajamani; Gagan Deep; Anil K. Jain; Rajesh Agarwal; Rana P. Singh

Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer. The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant prostate cancer cell lines by clonogenic, cell cycle, cell death, and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μmol/L) enhanced IR (2.5–10 Gy)-caused inhibition (up to 96%, P < 0.001) of colony formation selectively in prostate cancer cells, and prolonged and enhanced IR-caused G2–M arrest, apoptosis, and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of antiapoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P < 0.01) with higher apoptotic response (10-fold, P < 0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced prosurvival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Because silibinin is already in phase II clinical trial for prostate cancer patients, the present finding has translational relevance for radioresistant prostate cancer. Mol Cancer Ther; 14(12); 2722–34. ©2015 AACR.


Journal of Agricultural and Food Chemistry | 2016

Fabrication of BSA-Green Tea Polyphenols-Chitosan Nanoparticles and Their Role in Radioprotection: A Molecular and Biochemical Approach.

Sumit Kumar; Ramovatar Meena; Paulraj Rajamani

Normal tissue damage from ionizing radiation during radiotherapy is a major concern in cancer treatment. Tea polyphenols (TPs) have been shown to reduce radiation-induced damage in multiple studies, but their pharmacological application is still limited due to poor bioavailability. The present study was aimed at to increase the TPs bioavailability by nanoformulation by using BSA as the matrix and chitosan as the external shell. Encapsulated TPs nanoparticles were spherical in size and promoted TPs stability in normal and gastrointestinal conditions without losing antioxidant activity. Oral administration of nanoparticles for 3 days prior to irradiation exposure has been shown to protect mice from hematological injuries that result in the reduction of radiation-induced lethality. TPs reduce radiation-induced oxidative damage and apoptosis by restoring the redox status through the Nrf2-ERK pathway and reducing Bax expression, respectively. Regarding potency, encapsulated TPs have shown a significantly higher level of radioprotection than TPs, suggesting that TP nanoparticles can be explored as valuable radioprotective and pharmacotherapeutic agent.


PLOS ONE | 2016

Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages

Debika Datta; Preeti Khatri; Chaitali Banerjee; Ambika Singh; Ramavatar Meena; Dhira Rani Saha; Rajagopal Raman; Paulraj Rajamani; Abhijit Mitra; Shibnath Mazumder

Mycobacterium fortuitum causes ‘mycobacteriosis’ in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.


Biomedicine & Pharmacotherapy | 2017

PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells)

Ramovatar Meena; Sumit Kumar; Raj Kumar; Usha Singh Gaharwar; Paulraj Rajamani

Triple-negative breast cancers (TNBC) are aggressive cancers, which do not control by hormonal therapy or therapies that target HER-2 receptors. Curcumin (Cur) has shown cytotoxic effects in multiple cancer cell lines. However, its medical uses remain limited due to low aqueous solubility and poor bioavailability. Therefore, present study was aimed to fabricate the small positive charge curcumin nanoparticles (CN) by nanoprecipitation methods using PLGA and CTAB, and to evaluate its anticancer efficacy and underlying the mechanism in triple negative breast cancer cell lines (MDA-MB-231 cells). In in-vitro drug release assay, Cur was released from CN by flicking diffusion and anomalous transport process. CN showed a higher cellular incorporation than free Cur resulted in higher cytotoxicity. Checking the anticancer activity at the molecular level, Cur has shown to induce the reactive oxygen species production that subsequently causes the DNA damage and resulting in p38-MAPK activation. The p38-MAPK induce the expression of p16/INKK4a, p21/waf1/cip1 and p53 resulting in a reduction in the level of CDK2, CDK4, cyclin D1 and cyclin E and subsequently cell cycle arrest at G1/S and G2/M phase. It also reduces the expression of DNA repair gene, i.e. BRCA1, BRCA2, Rad51, Rad50, Mre11 and NBS1 resulting in apoptosis induction due to persistent DNA damage. This study presents an effective delivery of curcumin in TNBC cancer cells and it could open the new frontiers in clinical cancer chemotherapy.


Scientific Reports | 2016

Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

Surya Narayan Pradhan; Aleena Das; Ramovatar Meena; Ranjan Kumar Nanda; Paulraj Rajamani

Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.


Journal of Cellular Biochemistry | 2018

New N-benzhydrylpiperazine/1,3,4-oxadiazoles conjugates inhibit the proliferation, migration, and induce apoptosis in HeLa cancer cells via oxidative stress-mediated mitochondrial pathway: KHANAM et al.

Rashmin Khanam; Raj Kumar; Iram Iqbal Hejazi; Syed Shahabuddin; Ramovatar Meena; Paulraj Rajamani; Nitin Yadav; Asif Iqbal Bhat; Fareeda Athar

N‐benzhydrylpiperazine and 1,3,4‐oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N‐benzhydrylpiperazine clubbed with 1,3,4‐oxadiazoles (4a–4h) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N‐benzhydryl‐4‐((5‐(4‐aminophenyl)‐1,3,4‐oxadiazol‐2‐yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration‐dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration‐dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase‐3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.

Collaboration


Dive into the Paulraj Rajamani's collaboration.

Top Co-Authors

Avatar

Ramovatar Meena

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Rana P. Singh

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Dhanya K. Nambiar

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

H. N. Verma

Jaipur National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raj Kumar

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Ramavatar Meena

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumit Kumar

Jawaharlal Nehru University

View shared research outputs
Researchain Logo
Decentralizing Knowledge