Pavel Honzatko
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Honzatko.
Laser Physics Letters | 2009
Pavel Peterka; Jerome Maria; Bernard Dussardier; Radan Slavík; Pavel Honzatko; Vaclav Kubecek
Cladding-pumped ytterbium-doped fiber lasers belong presently among the most attractive high-power laser sources for wavelengths around 1060 nm. While the most typical configuration of the fiber laser cavity is linear Fabry-Perot arrangement with fiber Bragg gratings (FBGs), for some applications the ring cavity is preferable as it offers higher stability when unidirectional operation is enforced with fiber optic isolator [1]. Indeed, Yb doped fiber lasers are prone to the so-called sustained self pulsing that in the case of highly Yb-doped fiber (YDF) may lead to relatively stable self-Q-switched operation [2]. Occurrence of this phenomenon complicates investigation of laser configurations that use other Q-switching mechanism possibly allowing for more stable operation, other repetition rate and peak power, etc
IEEE Photonics Technology Letters | 2000
Pavel Peterka; Ivan Kasik; Jiri Kanka; Pavel Honzatko; Vlastimil Matejec; Milos Hayer
Several methods of preparing twin-core fibers (TCFs) that can be easily spliced to standard single-core single-mode fiber are proposed. Unlike the conventional TCF preparation methods that are used to fabricate a TCF with both cores placed symmetrically with respect to the fiber axis, these methods result in twin-core fibers that have one core in the fiber center. Experimental results obtained with the TCF fabricated by using one of the designs are presented.
Optics Letters | 2016
Jaroslaw Sotor; Maria Pawliszewska; Grzegorz Sobon; Pawel Kaczmarek; Aleksandra Przewolka; Iwona Pasternak; Jakub Cajzl; Pavel Peterka; Pavel Honzatko; Ivan Kasik; Wlodek Strupinski; Krzysztof M. Abramski
In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support. The laser generated ultrashort soliton pulses at 2080 nm with bandwidth up to 6.1 nm. The influence of the output coupling ratio and the SA modulation depth on the mode-locking performance was also investigated.
Optics Express | 2007
Pavel Honzatko; A. Kumpera; P. Škoda
The model of ultrafast nonlinear interferometer gate accounting for the polarization dependent gain and dynamic birefringence has been developed. It is shown that these effects can lead to appearance of the satellite pulses and limit the achievable extinction ratio. The effect of dynamic birefringence can be completely eliminated by proper adjustment of SOA axes but it can strongly impair the performance of the gate when the axes are misaligned. The switching window should not be set to half of a bit-period to avoid interference of the satellites of neighbor pulses.
Photonics, Devices, and Systems II | 2003
Pavel Peterka; Pavel Honzatko; Jiri Kanka; Vlastimil Matejec; Ivan Kasik
We demonstrate the application of a twin-core fiber comb filter to the generation of high repetition rate pulse trains in fiber lasers. We have found experimentally that passive mode locking of the fiber laser can be established due to concurrent effects of a nearly periodic transmission function of the twin-core fiber filter and of the modulational instability. The period of the generated pulse train is determined by the intermodal dispersion of the twin-core fiber inserted into the fiber laser cavity. A repetition rate as high as 206 GHz was achieved. The width of the generated pulses was 2.7 ps.
Laser Physics Letters | 2013
Pavel Honzatko; Yauhen Baravets; Filip Todorov; Pavel Peterka; Martin Becker
We experimentally demonstrated coherent beam combining of a pair of thulium-doped fiber lasers using an all-fiber Fox‐Smith resonator. We built two thulium-doped fiber lasers from PM fibers and pumped them at 793 nm. Each laser provided a power of more than 10 W at a wavelength of 2000 nm with a slope efficiency of more than 0.5. Then a compound Fox‐Smith resonator was created using the PM coupler. The obtained laser power was more than 20 W due to a constructive interference at the output of the laser, while the slope efficiency decreased to a value of 0.35. A stable CW output signal was achieved despite the fact that the individually operated lasers had the tendency to self-pulsate. (Some figures may appear in colour only in the online journal)
IEEE Photonics Technology Letters | 2004
M. Karasek; Jiri Kanka; Pavel Honzatko; Jan Radil
Application of all-optical gain-clamped (AOGC) lumped Raman fiber amplifier (RFA) for protection of surviving channels in multiwavelength networks is investigated experimentally and theoretically. Channel addition-removal was simulated by transmitting signals of two lasers through a counterdirectionally pumped RFA consisting of 16 km of dispersion compensating fiber. Light of one of the lasers was square-wave modulated at 500 Hz; power fluctuations of the other laser caused by cross-gain modulation of the RFA were monitored at the output of the amplifier with a digital oscilloscope. An all-optical feedback loop was implemented in the form of a ring laser. Theoretical analysis of the AOGC lumped RFA is based on numerical solution of coupled propagation equations for forward and backward-propagating pumps, signals, and spectral components of amplified spontaneous emission powers.
Optics Express | 2017
Jan Aubrecht; Pavel Peterka; Pavel Koška; Ondřej Podrazký; Filip Todorov; Pavel Honzatko; Ivan Kasik
Self-sweeping of laser wavelength corresponding to holmium emission near 2100 nm is reported. The sweeping occurred in ~4 nm interval with rate ~0.7 nm/s from longer towards shorter wavelengths. Origins of the selection of the sweeping direction are discussed. The laser wavelength drift with time was registered by Fourier transform infrared spectrometer. To our knowledge it is the first observation of self-swept fiber laser beyond 2000 nm.
Optics Express | 2016
Pavel Koška; Pavel Peterka; Jan Aubrecht; Ondřej Podrazký; Filip Todorov; Martin Becker; Yauhen Baravets; Pavel Honzatko; Ivan Kasik
Results of the first experimental demonstration of the recently proposed technique for improvement of the pump absorption in double-clad fibers by their simultaneous coiling and twisting are reported. The peak absorption (14 dB) of 3-m long hexagonal thulium-doped fiber was increased by 8 dB by its simultaneous coiling and twisting. Explanation of the effect is given by numerical modelling of the pump absorption in hexagonal and panda-type double-clad fibers. Improvement of fiber laser performance was also proved. The slope efficiency increased from 19.6% of the straight fiber to 23.9% of the coiled only fiber and 29.4% of the simultaneously coiled and twisted fiber.
international conference on transparent optical networks | 2006
M. Karasek; Jiri Kanka; Pavel Honzatko; Josef Vojtech; Jan Radil
We present experimental results and numerical simulations of multi-wavelength conversion of 10 Gb/s NRZ signals based on 2-pumps four-wave mixing, 10 Gb/s and 40 Gb/s RZ signals derived from supercontinuum (SC) generated in highly nonlinear fibre (HNLF). High quality SC with bandwidth exceeding 50 nm was generated when the HNLF was pumped with 25 dBm average power. Sliced SC can be used as a source for all-optical multicasting