Pavel Iserovich
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Iserovich.
Nature Structural & Molecular Biology | 2005
Anne-Catrin Uhlemann; Angus Cameron; Ursula Eckstein-Ludwig; Jorge Fischbarg; Pavel Iserovich; Felipe A. Zuñiga; Malcolm J East; Anthony G. Lee; Leo Brady; Richard K. Haynes; Sanjeev Krishna
Artemisinins are the most important class of antimalarial drugs. They specifically inhibit PfATP6, a SERCA-type ATPase of Plasmodium falciparum. Here we show that a single amino acid in transmembrane segment 3 of SERCAs can determine susceptibility to artemisinin. An L263E replacement of a malarial by a mammalian residue abolishes inhibition by artemisinins. Introducing residues found in other Plasmodium spp. also modulates artemisinin sensitivity, suggesting that artemisinins interact with the thapsigargin-binding cleft of susceptible SERCAs.
The Journal of Membrane Biology | 2006
Jorge Fischbarg; F.P.J. Diecke; Pavel Iserovich; A. A. Rubashkin
The mechanism of epithelial fluid transport is controversial and remains unsolved. Experimental difficulties pose obstacles for work on a complex phenomenon in delicate tissues. However, the corneal endothelium is a relatively simple system to which powerful experimental tools can be applied. In recent years our laboratory has developed experimental evidence and theoretical insights that illuminate the mechanism of fluid transport across this leaky epithelium. Our evidence points to fluid being transported via the paracellular route by a mechanism requiring junctional integrity, which we attribute to electro-osmotic coupling at the junctions. Fluid movements can be produced by electrical currents. The direction of the movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Aquaporin 1 (AQP1) is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability but not fluid transport, which militates against the presence of sizable water movements across the cell. By contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium predicts experimental results only when based on paracellular electro-osmosis, and not when transcellular local osmosis is assumed instead.Our experimental findings in corneal endothelium have allowed us to develop a novel paradigm for this preparation that includes: (1) paracellular fluid flow; (2) a crucial role for the junctions; (3) hypotonicity of the primary secretion; (4) an AQP role in regulation and not as a significant water pathway. These elements are remarkably similar to those proposed by the Hill laboratory for leaky epithelia.
The Journal of Membrane Biology | 1997
X. Wu; H. Yang; Pavel Iserovich; Jorge Fischbarg; Peter S. Reinach
Abstract. The relationship between relative cell volume and time-dependent changes in intracellular Ca2+ concentration ([Ca2+]i) during exposure to hypotonicity was characterized in SV-40 transformed rabbit corneal epithelial cells (tRCE) (i). Light scattering measurements revealed rapid initial swelling with subsequent 97% recovery of relative cell volume (characteristic time (τvr) was 5.9 min); (ii). Fura2-fluorescence single-cell imaging showed that [Ca2+]i initially rose by 216% in 30 sec with subsequent return to near baseline level after another 100 sec. Both relative cell volume recovery and [Ca2+]i transients were inhibited by either: (a) Ca2+-free medium; (b) 5 mm Ni2+ (inhibitor of plasmalemma Ca2+ influx); (c) 10 μm cyclopiazonic acid, CPA (which causes depletion of intracellular Ca2+ content); or (d) 100 μm ryanodine (inhibitor of Ca2+ release from intracellular stores). To determine the temporal relationship between an increased plasmalemma Ca2+ influx and the emptying of intracellular Ca2+ stores during the [Ca2+]i transients, Mn2+ quenching of fura2-fluorescence was quantified. In the presence of CPA, hypotonic challenge increased plasmalemma Mn2+ permeability 6-fold. However, Mn2+ permeability remained unchanged during exposure to either: 1.100 μm ryanodine; 2.10 μm CPA and 100 μm ryanodine. This report for the first time documents the time dependence of the components of the [Ca2+]i transient required for a regulatory volume decrease (RVD). The results show that ryanodine sensitive Ca2+ release from an intracellular store leads to a subsequent increase in plasmalemma Ca2+ influx, and that both are required for cells to undergo RVD.
American Journal of Physiology-cell Physiology | 1999
Jorge Fischbarg; Friedrich P. J. Diecke; Kunyan Kuang; Bin Yu; Fengying Kang; Pavel Iserovich; Yansui Li; Heinz Rosskothen; Jan P. Koniarek
We report for the first time that cultured lens epithelial cell layers and rabbit lenses in vitro transport fluid. Layers of the alphaTN4 mouse cell line and bovine cell cultures were grown to confluence on permeable membrane inserts. Fluid movement across cultured layers and excised rabbit lenses was determined by volume clamp (37 degrees C). Cultured layers transported fluid from their basal to their apical sides against a pressure head of 3 cmH2O. Rates were (in microliter. h-1. cm-2) 3.3 +/- 0.3 for alphaTN4 cells (n = 27) and 4.7 +/- 1.0 for bovine layers (n = 6). Quinidine, a blocker of K+ channels, and p-chloromercuribenzenesulfonate and HgCl2, inhibitors of aquaporins, inhibited fluid transport. Rabbit lenses transported fluid from their anterior to their posterior sides against a 2.5-cmH2O pressure head at 10.3 +/- 0.62 microliter. h-1. lens-1 (n = 5) and along the same pressure head at 12.5 +/- 1.1 microliter. h-1. lens-1 (n = 6). We calculate that this flow could wash the lens extracellular space by convection about once every 2 h and therefore might contribute to lens homeostasis and transparency.We report for the first time that cultured lens epithelial cell layers and rabbit lenses in vitro transport fluid. Layers of the αTN4 mouse cell line and bovine cell cultures were grown to confluence on permeable membrane inserts. Fluid movement across cultured layers and excised rabbit lenses was determined by volume clamp (37°C). Cultured layers transported fluid from their basal to their apical sides against a pressure head of 3 cmH2O. Rates were (in μl ⋅ h-1 ⋅ cm-2) 3.3 ± 0.3 for αTN4 cells ( n = 27) and 4.7 ± 1.0 for bovine layers ( n = 6). Quinidine, a blocker of K+ channels, and p-chloromercuribenzenesulfonate and HgCl2, inhibitors of aquaporins, inhibited fluid transport. Rabbit lenses transported fluid from their anterior to their posterior sides against a 2.5-cmH2O pressure head at 10.3 ± 0.62 μl ⋅ h-1 ⋅ lens-1( n = 5) and along the same pressure head at 12.5 ± 1.1 μl ⋅ h-1 ⋅ lens-1( n = 6). We calculate that this flow could wash the lens extracellular space by convection about once every 2 h and therefore might contribute to lens homeostasis and transparency.
The Journal of Membrane Biology | 2002
J.M. Sanchez; Yansui Li; A. A. Rubashkin; Pavel Iserovich; Quan Wen; J.W. Ruberti; R.W. Smith; D. Rittenband; Kunyan Kuang; F.P.J. Diecke; Jorge Fischbarg
The mechanism of transepithelial fluid transport remains unclear. The prevailing explanation is that transport of electrolytes across cell membranes results in local concentration gradients and transcellular osmosis. However, when transporting fluid, the corneal endothelium spontaneously generates a locally circulating current of approximately 25 microA cm(-2), and we report here that electrical currents (0 to +/-15 microA cm(-2)) imposed across this layer induce fluid movements linear with the currents. As the imposed currents must be approximately 98% paracellular, the direction of induced fluid movements and the rapidity with which they follow current imposition (rise time < or =3 sec) is consistent with electro-osmosis driven by sodium movement across the paracellular pathway. The value of the coupling coefficient between current and fluid movements found here (2.37 +/- 0.11 microm cm(2) hr(-1) microA (-1), suggests that: 1) the local endothelial current accounts for spontaneous transendothelial fluid transport; 2) the fluid transported becomes isotonically equilibrated. Ca(++)-free solutions or endothelial damage eliminate the coupling, pointing to the cells and particularly their intercellular junctions as a main site of electro-osmosis. The polycation polylysine, which is expected to affect surface charges, reverses the direction of current-induced fluid movements. Fluid transport is proportional to the electrical resistance of the ambient medium. Taken together, the results suggest that electro-osmosis through the intercellular junctions is the primary process in a sequence of events that results in fluid transport across this preparation.
The Journal of Membrane Biology | 2003
Victor N. Bildin; Zheng Wang; Pavel Iserovich; Peter S. Reinach
In hypertonicity-stressed (i.e., 600 mOsm) SV40-immortalized rabbit and human corneal epithelial cell layers (RCEC and HCEC, respectively), we characterized the relationship between time-dependent changes in translayer resistance, relative cell volume and modulation of MAPK superfamily activities. Sulforhodamine B permeability initially increased by 1.4- and 2-fold in RCEC and HCEC, respectively. Subsequently, recovery to its isotonic level only occurred in RCEC. Light scattering revealed that in RCEC 1) regulatory volume increase (RVI) extent was 20% greater; 2) RVI half-time was 2.5-fold shorter. However, inhibition of Na-K-2Cl cotransporter and Na/K-ATPase activity suppressed the RVI response more in HCEC. MAPK activity changes were as follows: 1) p38 was wave-like and faster as well as larger in RCEC than in HCEC (90-and 18-fold, respectively); 2) increases in SAPK/JNK activity were negligible in comparison to those of p38; 3) Erk1/2 activity declined to 30–40% of their basal values. SB203580, a specific p38 inhibitor, dose de-pendently suppressed the RVI responses in both cell lines. However, neither U0126, which inhibits MEK, the kinase upstream of Erk, nor SP600125, inhibitor of SAPK/JNK, had any effect on this response. Taken together, sufficient activation of the p38 limb of the MAPK superfamily during a hypertonic challenge is essential for maintaining epithelial cell volume and translayer resistance. On the other hand, Erk1/2 activity restoration seems to be dependent on cell volume recovery.
Investigative Ophthalmology & Visual Science | 2013
Jeffrey Freedman; Pavel Iserovich
PURPOSE To ascertain the presence of additional pro-inflammatory cytokines in glaucomatous aqueous, and their relationship with IOP. METHODS To quantify the levels of 23 pro-inflammatory cytokines, and correlate levels with IOP, aqueous humor samples were analyzed from 23 eyes with open angle glaucoma (OAG) undergoing glaucoma filtration procedures, and from 24 Molteno blebs during the hypertensive phase. Control aqueous was derived from 13 eyes without glaucoma undergoing cataract removal. RESULTS A significant difference (P<0.05) was noted between hypertensive bleb aqueous and controls in the amount TGF-β2, interleukins IL-6, IL-10, and chemokine (C-X-C motif) ligand 1 (CXCL1; GROα). The levels of these cytokines were higher in the glaucomatous aqueous, but not significantly so. A significant difference was noted in levels of chemokine (C-C motif) ligand 2 (CCL2; MCP-1, monocyte chemotactic protein-1) in the glaucoma eye and bleb aqueous compared with controls. Of the 23 cytokines tested for, 19 were found in the bleb group, 14 in the glaucoma group, and 16 in the control group. Compared with controls, all cytokines levels were higher in the glaucoma group and highest in the bleb group. CONCLUSIONS The study confirms the well documented presence of TGF-β2 in glaucomatous aqueous. The presence of significant levels of CCL2 in glaucomatous aqueous is a new finding. The finding of higher levels of all the cytokines in the aqueous from the encysted blebs, in which the IOP was the highest, suggests that their levels increase with an increase in IOP, as well as the possibility that encysted blebs form cytokines.
The Journal of Membrane Biology | 2005
José E. Capó-Aponte; Pavel Iserovich; Peter S. Reinach
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), τc = 19 min. In contrast, a hypotonic challenge induced a rapid (τc = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24°C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 μM), ouabain (1 mM), DIDS (1 mM), EIPA (100 μM), or Na+-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl− channel and K+-Cl− cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 μM), high K+ (20 mM) or Cl−-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl− channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na+-K+-2Cl− cotransporter (Na+-K+-2Cl−) and the Na+-K+ pump. Inhibition of K+ and Cl− channels and KCC but not Na+-K+-2Cl− affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.
Experimental Biology and Medicine | 2001
Quan Wen; F.P.J. Diecke; Pavel Iserovich; Kunyan Kuang; Janet R. Sparrow; Jorge Fischbarg
For immunocytochemistry, cultured bovine corneal endothelial cells (CBCEC) and bovine corneal cryosections were utilized. Preparations were fixed, permeabilized, and incubated with primary rabbit anti-rat aquaporin 1 (AQP1) antibody followed by rhodamine-conjugated secondary antibody, and were counter-stained with Sytox nuclear acid stain. Confocal microscopy of CBCEC in the x, y, and z planes showed rhodamine fluorescence, indicating the presence of AQP1 antibody localized to the apical and basolateral domains of the plasma membrane, but not to the membranes of intracellular compartments or other subcellular locations. Preabsorption with control antigenic peptide yielded no positive staining. Similar results were obtained using freshly dissected bovine corneas; in addition, these images showed AQP1 distributed to the plasma membranes of keratocytes. No AQP1 staining was seen in corneal epithelium, and no staining was observed in CBCEC layers exposed to AQP3, AQP4, and AQP5 antibodies.
The Journal of Membrane Biology | 2006
A. A. Rubashkin; Pavel Iserovich; J.A. Hernández; Jorge Fischbarg
The purpose of the present work is to investigate whether the idea of epithelial fluid transport based on electro-osmotic coupling at the level of the leaky tight junction (TJ) can be further supported by a plausible theoretical model. We develop a model for fluid transport across epithelial layers based on electro-osmotic coupling at leaky tight junctions (TJ) possessing protruding macromolecules and fixed electrical charges. The model embodies systems of electro-hydrodynamic equations for the intercellular pathway, namely the Brinkman and the Poisson-Boltzmann differential equations applied to the TJ. We obtain analytical solutions for a system of these two equations, and are able to derive expressions for the fluid velocity profile and the electrostatic potential. We illustrate the model by employing geometrical parameters and experimental data from the corneal endothelium, for which we have previously reported evidence for a central role for electro-osmosis in translayer fluid transport. Our results suggest that electro-osmotic coupling at the TJ can account for fluid transport by the corneal endothelium. We conclude that electro-osmotic coupling at the tight junctions could represent one of the basic mechanisms driving fluid transport across some leaky epithelia, a process that remains unexplained.