Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel Sova is active.

Publication


Featured researches published by Pavel Sova.


Nucleic Acids Research | 2006

Fast chromatin immunoprecipitation assay

Joel D. Nelson; Oleg Denisenko; Pavel Sova; Karol Bomsztyk

Chromatin immunoprecipitation (ChIP) is a widely used method to explore in vivo interactions between proteins and DNA. The ChIP assay takes several days to complete, involves several tube transfers and uses either phenol–chlorophorm or spin columns to purify DNA. The traditional ChIP method becomes a challenge when handling multiple samples. We have developed an efficient and rapid Chelex resin-based ChIP procedure that dramatically reduces time of the assay and uses only a single tube to isolate PCR-ready DNA. This method greatly facilitates the probing of chromatin changes over many time points with several antibodies in one experiment.


Science | 2014

Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance

Angela L. Rasmussen; Atsushi Okumura; Martin T. Ferris; Richard Green; Friederike Feldmann; Sara Kelly; Dana P. Scott; David Safronetz; Elaine Haddock; Rachel LaCasse; Matthew J. Thomas; Pavel Sova; Victoria S. Carter; Jeffrey M. Weiss; Darla R. Miller; Ginger D. Shaw; Marcus J. Korth; Mark T. Heise; Ralph S. Baric; Fernando Pardo-Manuel de Villena; Heinz Feldmann; Michael G. Katze

Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Intercrossed mice infected with Ebola virus show a spectrum of pathology from prolonged coagulation to total resistance. Variety of Ebola symptoms in mice Apart from monkeys, there are no animal models available that show the same symptoms of Ebola virus infection as those of humans. Rasmussen et al. tested the effects of Ebola virus in mice with defined genetic backgrounds in a series of pains-taking experiments performed under stringent biosafety conditions. Resistance and susceptibility to Ebola virus was associated with distinct genetic profiles in inflammation, blood coagulation, and vascular function. This panel of mice could prove valuable for preliminary screens of candidate therapeutics and vaccines. Science, this issue p. 987


Cancer Epidemiology, Biomarkers & Prevention | 2006

Discovery of Novel Methylation Biomarkers in Cervical Carcinoma by Global Demethylation and Microarray Analysis

Pavel Sova; Qinghua Feng; Gary K. Geiss; Troy Wood; Robert Strauss; Vania Rudolf; André Lieber; Nancy B. Kiviat

A genome-wide screening study for identification of hypermethylated genes in invasive cervical cancer (ICC) was carried out to augment our previously discovered panel of three genes found to be useful for detection of ICC and its precursor neoplasia. Putatively hypermethylated and silenced genes were reactivated in four ICC cell lines by treatment with 5-aza-2′-deoxycytidine and trichostatin A and identified on expression microarrays. Thirty-nine of the 235 genes up-regulated in multiple ICC cell lines were further examined to determine the methylation status of associated CpG islands. The diagnostic use of 23 genes that were aberrantly methylated in multiple ICC cell lines were then analyzed in DNA from exfoliated cells obtained from patients with or without ICC. We show, for the first time, that aberrant methylation of six genes (SPARC, TFPI2, RRAD, SFRP1, MT1G, and NMES1) is present in a high proportion of ICC clinical samples but not in normal samples. Of these genes, SPARC and TFPI2 showed the highest frequency of aberrant methylation in ICC specimens (86.4% for either) and together were hypermethylated in all but one ICC cases examined. We conclude that expression profiling of epigenetically reactivated genes followed by methylation analysis in clinical samples is a powerful tool for comprehensive identification of methylation markers. Several novel genes identified in our study may be clinically useful for detection or stratification of ICC and/or of its precursor lesions and provide a basis for better understanding of mechanisms involved in development of ICC. (Cancer Epidemiol Biomarkers Prev 2006;(15)1:114–23)


PLOS Biology | 2012

Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation.

Jun Zhu; Pavel Sova; Qiuwei Xu; Kenneth M. Dombek; Ethan Yixun Xu; Heather Vu; Zhidong Tu; Rachel B. Brem; Roger E. Bumgarner; Eric E. Schadt

DNA variation can be used as a systematic source of perturbation in segregating populations as a way to infer regulatory networks via the integration of large-scale, high-dimensional molecular profiling data.


PLOS ONE | 2011

Analysis of Epithelial and Mesenchymal Markers in Ovarian Cancer Reveals Phenotypic Heterogeneity and Plasticity

Robert Strauss; Zong-Yi Li; Ying Liu; Ines Beyer; Jonas Persson; Pavel Sova; Thomas Möller; Sari Pesonen; Akseli Hemminki; Petra Hamerlik; Charles W. Drescher; Nicole Urban; Jiri Bartek; André Lieber

In our studies of ovarian cancer cells we have identified subpopulations of cells that are in a transitory E/M hybrid stage, i.e. cells that simultaneously express epithelial and mesenchymal markers. E/M cells are not homogenous but, in vitro and in vivo, contain subsets that can be distinguished based on a number of phenotypic features, including the subcellular localization of E-cadherin, and the expression levels of Tie2, CD133, and CD44. A cellular subset (E/M-MP) (membrane E-cadherinlow/cytoplasmic E-cadherinhigh/CD133high, CD44high, Tie2low) is highly enriched for tumor-forming cells and displays features which are generally associated with cancer stem cells. Our data suggest that E/M-MP cells are able to differentiate into different lineages under certain conditions, and have the capacity for self-renewal, i.e. to maintain a subset of undifferentiated E/M-MP cells during differentiation. Trans-differentiation of E/M-MP cells into mesenchymal or epithelial cells is associated with a loss of stem cell markers and tumorigenicity. In vivo xenograft tumor growth is driven by E/M-MP cells, which give rise to epithelial ovarian cancer cells. In contrast, in vitro, we found that E/M-MP cells differentiate into mesenchymal cells, in a process that involves pathways associated with an epithelial-to-mesenchymal transition. We also detected phenotypic plasticity that was dependent on external factors such as stress created by starvation or contact with either epithelial or mesenchymal cells in co-cultures. Our study provides a better understanding of the phenotypic complexity of ovarian cancer and has implications for ovarian cancer therapy.


Mbio | 2013

Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

Laurence Josset; Vineet D. Menachery; Lisa E. Gralinski; Sudhakar Agnihothram; Pavel Sova; Victoria S. Carter; Boyd Yount; Rachel L. Graham; Ralph S. Baric; Michael G. Katze

ABSTRACT A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. IMPORTANCE Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the ability to anticipate possible differences in human clinical responses to HCoV-EMC and SARS-CoV. We used this information to predict potential effective drugs against HCoV-EMC, a method that could be more generally used to identify candidate therapeutics in future disease outbreaks. These data will help to generate hypotheses and make rapid advancements in characterizing this new virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the ability to anticipate possible differences in human clinical responses to HCoV-EMC and SARS-CoV. We used this information to predict potential effective drugs against HCoV-EMC, a method that could be more generally used to identify candidate therapeutics in future disease outbreaks. These data will help to generate hypotheses and make rapid advancements in characterizing this new virus.


Cancer Research | 2009

Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses

Robert Strauss; Pavel Sova; Ying Liu; Zong Yi Li; Sebastian Tuve; David K. Pritchard; Paul T. Brinkkoetter; Thomas Möller; Oliver Wildner; Sari Pesonen; Akseli Hemminki; Nicole Urban; Charles W. Drescher; André Lieber

We studied the susceptibility of primary ovarian cancer cells to oncolytic adenoviruses. Using gene expression profiling of cancer cells either resistant or susceptible to viral oncolysis, we discovered that the epithelial phenotype of ovarian cancer represents a barrier to infection by commonly used oncolytic adenoviruses targeted to coxsackie-adenovirus receptor or CD46. Specifically, we found that these adenovirus receptors were trapped in tight junctions and not accessible for virus binding. Accessibility to viral receptors was critically linked to depolarization and the loss of tight and adherens junctions, both hallmarks of epithelial-to-mesenchymal transition (EMT). We showed that specific, thus far little-explored adenovirus serotypes (Ad3, Ad7, Ad11, and Ad14) that use receptor(s) other than coxsackie-adenovirus receptor and CD46 were able to trigger EMT in epithelial ovarian cancer cells and cause efficient oncolysis. Our studies on ovarian cancer cultures and xenografts also revealed several interesting cancer cell biology features. Tumors in situ as well as tumor xenografts in mice mostly contained epithelial cells and cells that were in a hybrid stage where they expressed both epithelial and mesenchymal markers (epithelial/mesenchymal cells). These epithelial/mesenchymal cells are the only xenograft-derived cells that can be cultured and with passaging undergo EMT and differentiate into mesenchymal cells. Our study provides a venue for improved virotherapy of cancer as well as new insights into cancer cell biology.


Mbio | 2011

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4+ T Cell Line

Stewart T. Chang; Pavel Sova; Xinxia Peng; Jeffrey M. Weiss; G. L. Law; Robert E. Palermo; Michael G. Katze

ABSTRACT Next-generation sequencing (NGS) enables the highly sensitive measurement of whole transcriptomes. We report the first application to our knowledge of this technology to the analysis of RNA from a CD4+ T cell line infected with intact HIV. We sequenced the total mRNA from infected cells and detected differences in the expression of both host and viral mRNA. Viral reads represented a large portion of the total mapped sequencing reads: approximately 20% at 12 h postinfection (hpi) and 40% at 24 hpi. We also detected a small but significant suppression of T cell activation-related genes at 12 hpi. This suppression persisted and expanded by 24 hpi, providing new possible markers of virus-induced T cell cytopathology. By 24 hpi, the expression of over 50% of detectable host loci was also altered, indicating widespread alteration of host processes, including RNA processing, splicing, and transport to an extent not previously reported. In addition, next-generation sequencing provided insights into alternative viral RNA splice events and the expression of noncoding RNAs, including microRNA host genes. IMPORTANCE Recent advances in sequencing technology now allow the measurement of effectively all the RNA in a cell. This approach is especially useful for studying models of virus infection, as it allows the simultaneous measurement of both host and viral RNA. Using next-generation sequencing (NGS), we measured changes in total mRNA from a HIV-infected T cell line. To our knowledge, this is the first application of this technology to the investigation of HIV-host interactions involving intact HIV. We directly measured the amount of viral mRNA in infected cells and detected novel viral RNA splice variants and changes in the host expression of noncoding RNA species. We also detected small changes in T cell activation and other host processes during the early stages of viral replication that increased near the peak of viral replication, providing new candidate biomarkers of T cell death. Recent advances in sequencing technology now allow the measurement of effectively all the RNA in a cell. This approach is especially useful for studying models of virus infection, as it allows the simultaneous measurement of both host and viral RNA. Using next-generation sequencing (NGS), we measured changes in total mRNA from a HIV-infected T cell line. To our knowledge, this is the first application of this technology to the investigation of HIV-host interactions involving intact HIV. We directly measured the amount of viral mRNA in infected cells and detected novel viral RNA splice variants and changes in the host expression of noncoding RNA species. We also detected small changes in T cell activation and other host processes during the early stages of viral replication that increased near the peak of viral replication, providing new candidate biomarkers of T cell death.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Promoter Hypermethylation of Tumor Suppressor Genes in Urine from Patients with Cervical Neoplasia

Qinghua Feng; Stephen E. Hawes; Joshua E. Stern; Amadou Dem; Papa Salif Sow; Birama Dembele; Papa Toure; Pavel Sova; Peter W. Laird; Nancy B. Kiviat

We examined the feasibility of using detection of high-risk human papillomavirus (HPV) DNA in combination with the presence of aberrantly methylated genes (DAPK1, RARB, TWIST1, and CDH13) for urine-based cervical cancer screening. Urine samples from 129 Senegalese women, aged 35 years or older, 110 with (same day) biopsy-proven cervical neoplasia [cervical intraepithelial neoplasia grade 1 (CIN-1): n = 9; CIN-2–3/carcinoma in situ (CIS): n = 29; invasive cervical cancer (ICC): n = 72], and 19 without cervical neoplasia on biopsy were examined. Hypermethylation of at least one of the four genes identified 62% of ICC and 28% of CIN-2–3/CIS and was present in only 4% of CIN-1 or normal urines. High-risk HPV DNA was detected in urine in 70% of those with biopsy-proven ICC, 59% of those with CIN-2–3/CIS on biopsy, 44% of those with CIN-1 on biopsy, and only 11% of women negative for cervical neoplasia on biopsy. Urine-based detection of either high-risk HPV or hypermethylation of any of the four genes identified 84% of ICC, 64% of CIN-2–3/CIS, 44% of CIN-1, but only 19% of women negative for cervical neoplasia. The sensitivity for detection of CIN-2–3/CIS/ICC by high-risk HPV DNA or aberrant DNA methylation of four genes seems to be comparable to that of an exfoliated cervical cytology. This study shows the potential feasibility of using molecular markers detected in urine for cervical cancer screening. (Cancer Epidemiol Biomarkers Prev 2007;16(6):1178–84)


Mbio | 2013

Next-Generation Sequencing of Small RNAs from HIV-Infected Cells Identifies Phased microRNA Expression Patterns and Candidate Novel microRNAs Differentially Expressed upon Infection

Stewart T. Chang; Matthew J. Thomas; Pavel Sova; Richard Green; Robert E. Palermo; Michael G. Katze

ABSTRACT HIV infection of CD4+ T cells induces a range of host transcriptional changes in mRNAs as well as microRNAs that may coordinate changes in mRNAs. To survey these dynamic changes, we applied next-generation sequencing, analyzing the small RNA fraction of HIV-infected cells at 5, 12, and 24 h postinfection (RNA-Seq). These time points afforded a view of the transcriptomic changes occurring both before and during viral replication. In the resulting small RNA-Seq data set, we detected a phased pattern of microRNA expression. Largely distinct sets of microRNAs were found to be suppressed at 5 and 12 h postinfection, and both sets of changes rebounded later in infection. A larger set of microRNA changes was observed at 24 h postinfection. When integrated with mRNA expression data, the small RNA-Seq data indicated a role for microRNAs in transcriptional regulation, T cell activation, and cell cycle during HIV infection. As a unique benefit of next-generation sequencing, we also detected candidate novel host microRNAs differentially expressed during infection, including one whose downregulation at 24 h postinfection may allow full replication of HIV to proceed. Collectively, our data provide a uniquely comprehensive view of the changes in host microRNAs induced by HIV during cellular infection. IMPORTANCE New sequencing technologies allow unprecedented views into changes occurring in virus-infected cells, including comprehensive and largely unbiased measurements of different types of RNA. In this study, we used next-generation sequencing to profile dynamic changes in cellular microRNAs occurring in HIV-infected cells. The sensitivity afforded by sequencing allowed us to detect changes in microRNA expression early in infection, before the onset of viral replication. A phased pattern of expression was evident among these microRNAs, and many that were initially suppressed were later overexpressed at the height of infection, providing unique signatures of infection. By integrating additional mRNA data with the microRNA data, we identified a role for microRNAs in transcriptional regulation during infection and specifically a network of microRNAs involved in the expression of a known HIV cofactor. Finally, as a distinct benefit of sequencing, we identified candidate nonannotated microRNAs, including one whose downregulation may allow HIV-1 replication to proceed fully. New sequencing technologies allow unprecedented views into changes occurring in virus-infected cells, including comprehensive and largely unbiased measurements of different types of RNA. In this study, we used next-generation sequencing to profile dynamic changes in cellular microRNAs occurring in HIV-infected cells. The sensitivity afforded by sequencing allowed us to detect changes in microRNA expression early in infection, before the onset of viral replication. A phased pattern of expression was evident among these microRNAs, and many that were initially suppressed were later overexpressed at the height of infection, providing unique signatures of infection. By integrating additional mRNA data with the microRNA data, we identified a role for microRNAs in transcriptional regulation during infection and specifically a network of microRNAs involved in the expression of a known HIV cofactor. Finally, as a distinct benefit of sequencing, we identified candidate nonannotated microRNAs, including one whose downregulation may allow HIV-1 replication to proceed fully.

Collaboration


Dive into the Pavel Sova's collaboration.

Top Co-Authors

Avatar

André Lieber

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Strauss

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Nicole Urban

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Charles W. Drescher

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Richard Green

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaoheng Ni

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge