Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel Keblinski is active.

Publication


Featured researches published by Pawel Keblinski.


International Journal of Heat and Mass Transfer | 2002

Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)

Pawel Keblinski; Simon R. Phillpot; Stephen U. S. Choi; J. A. Eastman

Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles, and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport.


Journal of Applied Physics | 2009

A benchmark study on the thermal conductivity of nanofluids

Jacopo Buongiorno; David C. Venerus; Naveen Prabhat; Thomas J. McKrell; Jessica Townsend; Rebecca J. Christianson; Yuriy V. Tolmachev; Pawel Keblinski; Lin Wen Hu; Jorge L. Alvarado; In Cheol Bang; Sandra Whaley Bishnoi; Marco Bonetti; Frank Botz; Yun Chang; Gang Chen; Haisheng Chen; Sung Jae Chung; Minking K. Chyu; Sarit K. Das; Roberto Di Paola; Yulong Ding; Frank Dubois; Grzegorz Dzido; Jacob Eapen; Werner Escher; Denis Funfschilling; Quentin Galand; Jinwei Gao; Patricia E. Gharagozloo

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.


Materials Today | 2005

Nanofluids for thermal transport

Pawel Keblinski; J. A. Eastman; David G. Cahill

Nanofluids, i.e. fluid suspensions of nanometer-sized solid particles and fibers, have been proposed as a route for surpassing the performance of heat transfer liquids currently available. Recent experiments on nanofluids have indicated significant increases in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increases in critical heat flux in boiling heat transfer. Some of the experimental results are controversial, e.g. the extent of thermal conductivity enhancement sometimes greatly exceeds the predictions of well-established theories. So, if these exciting results on nanofluids can be confirmed in future systematic experiments, new theoretical descriptions may be needed to account properly for the unique features of nanofluids, such as high particle mobility and large surface-to-volume ratio.


Applied physics reviews | 2014

Nanoscale thermal transport. II. 2003–2012

David G. Cahill; Paul V. Braun; Gang Chen; David R. Clarke; Shanhui Fan; Kenneth E. Goodson; Pawel Keblinski; William P. King; G. D. Mahan; Arun Majumdar; Humphrey J. Maris; Simon R. Phillpot; Eric Pop; Li Shi

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interface...


Journal of Applied Physics | 2004

Role of thermal boundary resistance on the heat flow in carbon-nanotube composites

Sergei Shenogin; L. Xue; Rahmi Ozisik; Pawel Keblinski; David G. Cahill

We use classical molecular dynamics simulations to study the interfacial resistance for heat flow between a carbon nanotube and octane liquid. We find a large value of the interfacial resistance associated with weak coupling between the rigid tube structure and the soft organic liquid. Our simulation demonstrates the key role played by the soft vibration modes in the mechanism of the heat flow. These results imply that the thermal conductivity of carbon-nanotube polymer composites and organic suspensions will be limited by the interface thermal resistance and are consistent with recent experiments.


Applied Physics Letters | 2006

Effect of aggregation on thermal conduction in colloidal nanofluids

Ravi Prasher; William Evans; Paul Meakin; Jacob Fish; Patrick E. Phelan; Pawel Keblinski

Using effective medium theory the authors demonstrate that the thermal conductivity of nanofluids can be significantly enhanced by the aggregation of nanoparticles into clusters. Predictions of the effective medium theory are in excellent agreement with detailed numerical calculation on model nanofluids involving fractal clusters and show the importance of cluster morphology on thermal conductivity enhancements.


Applied Physics Letters | 2006

Role of Brownian motion hydrodynamics on nanofluid thermal conductivity

William Evans; Jacob Fish; Pawel Keblinski

We use a simple kinetic theory based analysis of heat flow in fluid suspensions of solid nanoparticles (nanofluids) to demonstrate that the hydrodynamics effects associated with Brownian motion have a minor effect on the thermal conductivity of the nanofluid. Our conjecture is supported by the results of molecular dynamics simulations of heat flow in a model nanofluid with well-dispersed particles. Our findings are consistent with the predictions of the effective medium theory as well as with recent experimental results on well dispersed metal nanoparticle suspensions.


Applied Physics Letters | 2010

Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination

William Evans; Lin Hu; Pawel Keblinski

We use equilibrium molecular dynamic simulations to compute thermal conductivity of graphene nanoribbons with smooth and rough edges. We also study effects of hydrogen termination. We find that conductivity is the highest for smooth edges and is essentially the same for zigzag and armchair edges. In the case of rough edges, the thermal conductivity is a strong function of the ribbon width indicating the important effect of phonon scattering from the edge. Hydrogen termination also reduces conductivity by a significant amount.


Applied Physics Letters | 2004

Effect of chemical functionalization on thermal transport of carbon nanotube composites

Sergei Shenogin; Arun Bodapati; L. Xue; Rahmi Ozisik; Pawel Keblinski

We use molecular dynamics simulations to analyze the role of chemical bonding between the matrix and the fiber on thermal transport in carbon nanotube organic matrix composites. We find that chemical bonding significantly reduces tube-matrix thermal boundary resistance, but at the same time decreases intrinsic tube conductivity. Estimates based on the effective medium theory predict increase, by about a factor of two, of the composite conductivity due to functionalization of single-walled nanotubes with aspect ratios within 100–1000 range. Interestingly, at high degree of chemical functionalization, intrinsic tube conductivity becomes independent of the bond density.


Applied Physics Letters | 2005

On the lack of thermal percolation in carbon nanotube composites

N. Shenogina; Sergei Shenogin; L. Xue; Pawel Keblinski

Recent experiments demonstrated very low percolation thresholds for carbon nanotube composites signified by steep increases in electrical conductivity at very low nanotube loadings. By contrast, thermal transport measurements, even on the same samples, showed no signature of the percolation threshold. These contrasting behaviors are particularly intriguing considering that both transport processes are described by the same continuum equation. In this letter we present a theoretical analysis based on finite element calculations that expose the underlying reasons for markedly different behaviors of electrical and thermal transport in high aspect ratio fiber composites.

Collaboration


Dive into the Pawel Keblinski's collaboration.

Top Co-Authors

Avatar

Sergei Shenogin

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Tapan G. Desai

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Liang

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Patrick K. Schelling

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Sanat K. Kumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Arun Bodapati

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Rahmi Ozisik

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

William Evans

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Raghavan Ranganathan

Rensselaer Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge