Paweł Zadrożny
University of Agriculture, Faisalabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paweł Zadrożny.
Chemosphere | 2017
Ryszard Mazurek; Joanna Kowalska; Michał Gąsiorek; Paweł Zadrożny; Agnieszka Józefowska; Tomasz Zaleski; Wojciech Kępka; Maryla Tymczuk; Kalina Orłowska
In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (Igeo), Nemerow Pollution Index (PINemerow) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content.
Journal of Ecological Engineering | 2014
Agnieszka Józefowska; Anna Miechówka; Michał Gąsiorek; Paweł Zadrożny
The purpose of this study was to evaluate the state of contamination with zinc, lead, and cadmium in selected soils of the Śląskie and Ciezkowickie Foothills and to determine the impact of the type of agricultural use and selected physico-chemical properties of soils on heavy metal content. The test soils were characterized by natural content of zinc, lead, and cadmium in most cases. Only one type of soil located on Śląskie Foothills developed increased levels of Cd (1.1 mg · kg -1 ). The content of zinc, lead, and cadmium in the surface layer (0–30 cm) was higher in the soils of Śląskie Foothills than in soils of Ciezkowickie Foothills. The bedrocks from which the soils of these two mesoregions are formed differed significantly only in the content of zinc (it was higher in the soils of Śląskie Foothills). The content of Zn, Pb, and Cd in the surface layer of soil depends on its texture and organic carbon and total nitrogen content. There was also a positive correlation between the content of Pb and Cd and hydrolytic acidity and between the content of Zn and Ca and CEC. Different types of land uses did not influence the content of the metals.
Journal of Soils and Sediments | 2018
Paweł Nicia; Romualda Bejger; Paweł Zadrożny; Maria Sterzyńska
PurposeThe objective of this study was to determine the impact of restoration processes on the selected soil properties and organic matter transformation of mountain fens under the Caltho-Alnetum community in the Babiogórski National Park in Outer Flysch Carpathians.Materials and methodsRestoration processes were conducted on three degraded mountain fens in the Babiogórski National Park in Outer Flysch Carpathians, Poland. The degradation degree of soils was the criterion for the selection of habitats for further studies. To determine the influence of restoration processes on mountain fen soil properties and organic matter transformation, samples were collected in 2011 and 2013. The soil samples were assayed for pH, base cation concentration, hydrolytic acidity, organic carbon and total nitrogen content, total exchangeable base cation concentration, cation exchange capacity, and base saturation. Organic matter fractions were extracted by IHSS method. Quantitative and qualitative study of organic matter was based on fraction composition analysis and the ratio of humic acid carbon to fulvic acid carbon. The research results were statistically verified.Results and discussionBased on morphological and chemical properties, the studied mountain fen soils can be classified as Sapric Dranic Eutric Histosols and Sapric Dranic Dystric Histosols according to WRB guidelines (2015). Before restoration processes, the mountain fen soils subjected to a different water regime showed various contents of total nitrogen and organic carbon. The decreasing of the groundwater level was reflected in pH, calcium ion content, exchangeable base cation concentration, and base saturation. The increase of the groundwater level had influence on chemical properties of mountain fen soils such as pH, total exchangeable base cation concentration, hydrolytic acidity, cation exchange capacity, and base saturation. Three-year restoration processes did not cause significant changes in the composition of humic substance fractions.ConclusionsMountain fens under Caltho-Alnetum community are priority habitats in Babiogórski National Park in Outer Flysch Carpathians, Poland. These habitats responded to restoration processes in varying degrees depending on the extent of their degradation. The least degraded mountain fen was characterized by a short response time on the restoration processes. The reaction of higher degraded habitats was weaker.
Soil Science | 2017
Tomasz Wanic; Jan Bodziarczyk; Michał Gąsiorek; Paweł Hawryło; Agnieszka Józefowska; Bartłomiej Kajdas; Ryszard Mazurek; Marta Szostak; Michał Usień; Piotr Wężyk; Paweł Zadrożny; Karolina Zięba-Kulawik; Tomasz Zaleski
Abstract The primary objective of this study was to characterise the edaphic conditions of forest areas in the Pieniny National Park (PNP), and to describe the dependencies between properties of forest soils and types of forest plant communities. The “Soil Trophic Index” (SIGg) for mountainous areas was applied. The evaluation of the trophism for 74 forest monitoring employed the soil trophic index for mountainous areas SIGg or SIGgo. Plant communities in the forest monitoring areas were classified according to the Braun-Blanquet’s phytosociological method. Soils of PNP present in the forest monitoring areas were mostly classified as eutrophic brown soils (72.9%), rendzinas (10.8%), brown rendzinas (5.41%), and rubble initial soils (5.41%). Pararendzinas, dystrophic brown soils, and gley soils were less common (total below 5.5%). In the forest monitoring areas of PNP, eutrophic soils predominate over mesotrophic soils. High SIGg index of the soils is caused by high values of acidity and nitrogen content. The Carpathian beech forest Dentario glandulosae-Fagetum and thermophilic beech forest Carici albae-Fagetum associations are characterised by high naturalness and compatibility of theoretical habitats. The soils of the Carpathian fir forest Dentario glandulosae-Fagetum abietetosum subcommunity is characterised by a higher share of silt and clay particles and lower acidity as compared to the Carpathian beech forest Dentario glandulosae-Fagetum typicum subcommunity. The soils of the forest monitoring areas in PNP stand out in terms of their fertility against forest soils in other mountainous areas in Poland.
Journal of Ecological Engineering | 2017
Paweł Zadrożny; Joanna Małgorzata Krużel; Tomasz Lamorski; Paweł Nicia; Piotr Kozina
The conducted research aimed at establishing the pace and range of the formation of spruce windfall in Compartment 93 of the Babia Góra National Park, where in 2005 by the decision of the Park’s Director, with the approval of the Scientific Council of the Park, a monitoring area was created. During field work the range of the existing windfall area was mapped through determining its outermost points and their stabilization by means of the GPS. During the research an analysis of the aerial photographs made available by the Babia Góra National Park was carried out, in order to determine the changes in the range of the area deprived of trees. The analyzed photographs covered the area of 5 ha in Compartment 93 of the Park. The evaluation of changes in the tree layer was based on the graticule reproducing the 10 x 10 m area of the real land. The “lack of trees” was stated when the areas were exposed in at least 75%. The comparative analysis of the images from aerial photographs of Compartment 93 in 2003, 2011, 2012 and 2014 showed distinct changes in the range and size of the gaps made by fallen trees. The share of the gaps in the forest stand in the whole analyzed area increased from 2% in 2003 to over 52% in 2014. Therefore, the progression of the size of the changes is considerable and the disintegration of the tree layer is growing, especially comparing the 2003–2011 and the twice shorter 2011–2014 periods. In the analyzed periods, the increase in the gap area was similar (ca. 26%), yet the pace of the phenomenon was twice faster. The obtained results were an argument in favor of increasing the monitoring area from 0.28 ha to 1.55 ha.
Pedobiologia | 2017
Kamil Rzeszowski; Paweł Zadrożny; Paweł Nicia
Polish Journal of Soil Science | 2011
Anna Miechówka; Agnieszka Józefowska; M Gasiorek; Paweł Zadrożny
Geographia Polonica | 2015
Paweł Nicia; Paweł Zadrożny; Barbara Czajka
Ecological Indicators | 2018
Maria Sterzyńska; Paweł Nicia; Paweł Zadrożny; Cristina Fiera; Julia Shrubovych; Werner Ulrich
Polish Journal of Soil Science | 2016
Anna Miechówka; Michał Gąsiorek; Agnieszka Józefowska; Paweł Zadrożny