Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pearl S. Huang is active.

Publication


Featured researches published by Pearl S. Huang.


Science | 2009

Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer

Kenneth P. Olive; Michael A. Jacobetz; Christian J. Davidson; Aarthi Gopinathan; Dominick J.O. McIntyre; Davina Jean Honess; Basetti Madhu; Mae Goldgraben; Meredith E. Caldwell; David Allard; Kristopher K. Frese; Gina M. DeNicola; Christine Feig; Chelsea Combs; Stephen P. Winter; Heather Ireland-Zecchini; Stefanie Reichelt; William J. Howat; Alex R. Chang; Mousumi Dhara; Lifu Wang; Felix Rückert; Robert Grützmann; Christian Pilarsky; Kamel Izeradjene; Sunil R. Hingorani; Pearl S. Huang; Susan E. Davies; William Plunkett; Merrill J. Egorin

Its All in the Delivery Pancreatic cancer is almost universally associated with a poor prognosis, in part because the tumors are resistant to chemotherapeutic drugs. Working with a mouse tumor model that displays many features of the human disease, Olive et al. (p. 1457, published online 21 May; see the Perspective by Olson and Hanahan) found that the tumors were poorly vascularized, a factor likely to impede drug delivery. Treatment of the mice with the chemotherapeutic drug gemcitabine in combination with a drug that depletes tumor-associated stromal tissue led to an increase in tumor vasculature, enhanced delivery of gemcitabine, and a delay in disease progression. Thus, drugs targeting the tumor stroma may merit investigation as a way to enhance the efficacy of conventional chemotherapy for pancreatic cancer. Pancreatic tumors are unresponsive to chemotherapy because their limited vasculature precludes efficient drug delivery. Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.


Nature Reviews Cancer | 2007

Targeted anti-mitotic therapies: can we improve on tubulin agents?

Jeffrey R. Jackson; Denis R. Patrick; Mohammed M. Dar; Pearl S. Huang

The advent of molecularly targeted drug discovery has facilitated the identification of a new generation of anti-mitotic therapies that target proteins with specific functions in mitosis. The exquisite selectivity for mitosis and the distinct ways in which these new agents interfere with mitosis provides the potential to not only overcome certain limitations of current tubulin-targeted anti-mitotic drugs, but to expand the scope of clinical efficacy that those drugs have established. The development of these new anti-mitotic drugs as targeted therapies faces significant challenges; nevertheless, these potential therapies also serve as unique tools to dissect the molecular mechanisms of the mitotic-checkpoint response.


Cancer Research | 2006

Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885

Alastair J. King; Denis R. Patrick; Roberta S. Batorsky; Maureen L. Ho; Hieu T. Do; Shu Yun Zhang; Rakesh Kumar; David W. Rusnak; Andrew K. Takle; David M. Wilson; Erin D. Hugger; Lifu Wang; Florian A. Karreth; Julie Lougheed; Jae Lee; David Hau Wing Chau; Thomas J. Stout; Earl W. May; Cynthia M. Rominger; Michael D. Schaber; Lusong Luo; Ami S. Lakdawala; Jerry L. Adams; Rooja G. Contractor; Keiran S.M. Smalley; Meenhard Herlyn; Michael M. Morrissey; David A. Tuveson; Pearl S. Huang

Oncogenic BRAF alleles are both necessary and sufficient for cellular transformation, suggesting that chemical inhibition of the activated mutant protein kinase may reverse the tumor phenotype. Here, we report the characterization of SB-590885, a novel triarylimidazole that selectively inhibits Raf kinases with more potency towards B-Raf than c-Raf. Crystallographic analysis revealed that SB-590885 stabilizes the oncogenic B-Raf kinase domain in an active configuration, which is distinct from the previously reported mechanism of action of the multi-kinase inhibitor, BAY43-9006. Malignant cells expressing oncogenic B-Raf show selective inhibition of mitogen-activated protein kinase activation, proliferation, transformation, and tumorigenicity when exposed to SB-590885, whereas other cancer cell lines and normal cells display variable sensitivities or resistance to similar treatment. These studies support the validation of oncogenic B-Raf as a target for cancer therapy and provide the first evidence of a correlation between the expression of oncogenic BRAF alleles and a positive response to a selective B-Raf inhibitor.


Cancer Research | 2008

Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity

Nelson Rhodes; Dirk A. Heerding; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Tona M. Gilmer; Shu-Yun Zhang; Kimberly Robell; Jason Kahana; Robert S. Geske; Elena Kleymenova; Anthony E. Choudhry; Zhihong Lai; Jack D. Leber; Elisabeth A. Minthorn; Susan L. Strum; Edgar R. Wood; Pearl S. Huang; Robert A. Copeland; Rakesh Kumar

Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. It causes dose-dependent reductions in the phosphorylation state of multiple proteins downstream of Akt, including GSK3 beta, PRAS40, and Forkhead. GSK690693 inhibited proliferation and induced apoptosis in a subset of tumor cells with potency consistent with intracellular inhibition of Akt kinase activity. In immune-compromised mice implanted with human BT474 breast carcinoma xenografts, a single i.p. administration of GSK690693 inhibited GSK3 beta phosphorylation in a dose- and time-dependent manner. After a single dose of GSK690693, >3 micromol/L drug concentration in BT474 tumor xenografts correlated with a sustained decrease in GSK3 beta phosphorylation. Consistent with the role of Akt in insulin signaling, treatment with GSK690693 resulted in acute and transient increases in blood glucose level. Daily administration of GSK690693 produced significant antitumor activity in mice bearing established human SKOV-3 ovarian, LNCaP prostate, and BT474 and HCC-1954 breast carcinoma xenografts. Immunohistochemical analysis of tumor xenografts after repeat dosing with GSK690693 showed reductions in phosphorylated Akt substrates in vivo. These results support further evaluation of GSK690693 as an anticancer agent.


BMC Medical Genomics | 2011

EMT is the dominant program in human colon cancer

Andre Loboda; Michael Nebozhyn; James Watters; Carolyne A Buser; Peter M. Shaw; Pearl S. Huang; Laura J. van 't Veer; Rob A. E. M. Tollenaar; David B Jackson; Deepak Agrawal; Hongyue Dai; Timothy J. Yeatman

BackgroundColon cancer has been classically described by clinicopathologic features that permit the prediction of outcome only after surgical resection and staging.MethodsWe performed an unsupervised analysis of microarray data from 326 colon cancers to identify the first principal component (PC1) of the most variable set of genes. PC1 deciphered two primary, intrinsic molecular subtypes of colon cancer that predicted disease progression and recurrence.ResultsHere we report that the most dominant pattern of intrinsic gene expression in colon cancer (PC1) was tightly correlated (Pearson R = 0.92, P < 10-135) with the EMT signature-- both in gene identity and directionality. In a global micro-RNA screen, we further identified the most anti-correlated microRNA with PC1 as MiR200, known to regulate EMT.ConclusionsThese data demonstrate that the biology underpinning the native, molecular classification of human colon cancer--previously thought to be highly heterogeneous-- was clarified through the lens of comprehensive transcriptome analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Antitumor activity of an allosteric inhibitor of centromere-associated protein-E

Kenneth W. Wood; Latesh Lad; Lusong Luo; Xiangping Qian; Steven D. Knight; Neysa Nevins; Katjuša Brejc; David Sutton; Aidan G. Gilmartin; Penelope Chua; Radhika Desai; Stephen Schauer; Dean E. McNulty; Roland S. Annan; Lisa Belmont; Carlos Garcia; Yan Lee; Melody Diamond; Leo F. Faucette; Michele Giardiniere; Shu-Yun Zhang; Chiu-Mei Sun; Justin D. Vidal; Serge Lichtsteiner; William D. Cornwell; Joel Greshock; Richard Wooster; Jeffrey T. Finer; Robert A. Copeland; Pearl S. Huang

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.


BMC Medical Genomics | 2010

A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

Andrey Loboda; Michael Nebozhyn; Rich Klinghoffer; Jason Frazier; Michael Chastain; William T. Arthur; Brian Roberts; Theresa Zhang; Melissa Chenard; Brian B. Haines; Jannik N. Andersen; Kumiko Nagashima; Cloud Paweletz; Bethany Lynch; Igor Feldman; Hongyue Dai; Pearl S. Huang; James Watters

BackgroundHyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence.MethodsWe used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets.ResultsThe RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer.ConclusionsThese data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.


Molecular Cancer Therapeutics | 2005

Matrix metalloproteinase–activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity

Charles F. Albright; Nilsa R. Graciani; Wei Han; Eddy W. Yue; Ross L. Stein; Zhihong Lai; Melody Diamond; Randine L. Dowling; Lisa C. Grimminger; Shu-Yun Zhang; Davette L. Behrens; Amy Musselman; Robert Bruckner; Mingzhu Zhang; Xiang Jiang; Daniel Hu; Anne Higley; Susan V. Dimeo; Maria Rafalski; Bruce D. Car; Swamy Yeleswaram; Robert A. Copeland; Andrew P. Combs; Steve P. Seitz; George L. Trainor; Rebecca Taub; Pearl S. Huang; Allen Oliff

Matrix metalloproteinase (MMP)–activated prodrugs were formed by coupling MMP-cleavable peptides to doxorubicin. The resulting conjugates were excellent in vitro substrates for MMP-2, -9, and -14. HT1080, a fibrosarcoma cell line, was used as a model system to test these prodrugs because these cells, like tumor stromal fibroblasts, expressed several MMPs. In cultured HT1080 cells, simple MMP-cleavable peptides were primarily metabolized by neprilysin, a membrane-bound metalloproteinase. MMP-selective metabolism in cultured HT1080 cells was obtained by designing conjugates that were good MMP substrates but poor neprilysin substrates. To determine how conjugates were metabolized in animals, MMP-selective conjugates were given to mice with HT1080 xenografts and the distribution of doxorubicin was determined. These studies showed that MMP-selective conjugates were preferentially metabolized in HT1080 xenografts, relative to heart and plasma, leading to 10-fold increases in the tumor/heart ratio of doxorubicin. The doxorubicin deposited by a MMP-selective prodrug, compound 6, was more effective than doxorubicin at reducing HT1080 xenograft growth. In particular, compound 6 cured 8 of 10 mice with HT1080 xenografts at doses below the maximum tolerated dose, whereas doxorubicin cured 2 of 20 mice at its maximum tolerated dose. Compound 6 was less toxic than doxorubicin at this efficacious dose because mice treated with compound 6 had no detectable changes in body weight or reticulocytes, a marker for marrow toxicity. Hence, MMP-activated doxorubicin prodrugs have a much higher therapeutic index than doxorubicin using HT1080 xenografts as a preclinical model.


Clinical Cancer Research | 2015

Antitumor activity in ras-driven tumors by blocking akt and mek

Anthony W. Tolcher; Khurum Khan; Michael Ong; Udai Banerji; Vassiliki Papadimitrakopoulou; David R. Gandara; Amita Patnaik; Richard D. Baird; David Olmos; Christopher R. Garrett; Jeffrey M. Skolnik; Eric H. Rubin; Paul D. Smith; Pearl S. Huang; Maria Learoyd; Keith Shannon; Anne Morosky; Ernestina Tetteh; Ying Ming Jou; Kyriakos P. Papadopoulos; Victor Moreno; Brianne Kaiser; Timothy A. Yap; Li Yan; Johann S. de Bono

Purpose: KRAS is the most commonly mutated oncogene in human tumors. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies. Experimental Design: We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumors. Recommended dosing schedules were defined as MK-2206 at 135 mg weekly and selumetinib at 100 mg once daily. Results: Grade 3 rash was the most common dose-limiting toxicity (DLT); other DLTs included grade 4 lipase increase, grade 3 stomatitis, diarrhea, and fatigue, and grade 3 and grade 2 retinal pigment epithelium detachment. There were no meaningful pharmacokinetic drug–drug interactions. Clinical antitumor activity included RECIST 1.0–confirmed partial responses in non–small cell lung cancer and low-grade ovarian carcinoma. Conclusion: Responses in KRAS-mutant cancers were generally durable. Clinical cotargeting of MEK and AKT signaling may be an important therapeutic strategy in KRAS-driven human malignancies (Trial NCT number NCT01021748). Clin Cancer Res; 21(4); 739–48. ©2014 AACR.


Clinical Pharmacology & Therapeutics | 2009

Biomarker discovery: identification of a growth factor gene signature.

Andrey Loboda; Michael Nebozhyn; C Cheng; R Vessey; Pearl S. Huang; Hongyue Dai; James Watters

Gene expression signatures can be developed as comprehensive pathway readouts and used as pharmacodynamic or patient‐stratification biomarkers. 1, 2 While a consensus on the best practices for selecting gene expression signatures from microarray data is evolving, we have developed basic guidelines to ensure consistency and quality. Here we illustrate these guidelines through the identification of a growth factor gene expression signature that is responsive to phosphatidylinositol 3‐kinase (PI3K) pathway perturbations in vitro and related to phosphatase and tensin homolog (PTEN) deregulation in vivo.

Collaboration


Dive into the Pearl S. Huang's collaboration.

Top Co-Authors

Avatar

Michael Nebozhyn

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge