Pedro J. J. Alvarez
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro J. J. Alvarez.
Environmental Toxicology and Chemistry | 2008
Stephen J. Klaine; Pedro J. J. Alvarez; Graeme E. Batley; Teresa F. Fernandes; Richard D. Handy; Delina Y. Lyon; Shaily Mahendra; Mike J. McLaughlin; Jamie R. Lead
The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.
Water Research | 2008
Qilin Li; Shaily Mahendra; Delina Y. Lyon; Lena Brunet; Michael V. Liga; Dong Li; Pedro J. J. Alvarez
The challenge to achieve appropriate disinfection without forming harmful disinfection byproducts by conventional chemical disinfectants, as well as the growing demand for decentralized or point-of-use water treatment and recycling systems calls for new technologies for efficient disinfection and microbial control. Several natural and engineered nanomaterials have demonstrated strong antimicrobial properties through diverse mechanisms including photocatalytic production of reactive oxygen species that damage cell components and viruses (e.g. TiO2, ZnO and fullerol), compromising the bacterial cell envelope (e.g. peptides, chitosan, carboxyfullerene, carbon nanotubes, ZnO and silver nanoparticles (nAg)), interruption of energy transduction (e.g. nAg and aqueous fullerene nanoparticles (nC(60))), and inhibition of enzyme activity and DNA synthesis (e.g. chitosan). Although some nanomaterials have been used as antimicrobial agents in consumer products including home purification systems as antimicrobial agents, their potential for disinfection or microbial control in system level water treatment has not been carefully evaluated. This paper reviews the antimicrobial mechanisms of several nanoparticles, discusses their merits, limitations and applicability for water disinfection and biofouling control, and highlights research needs to utilize novel nanomaterials for water treatment applications.
Water Research | 2013
Xiaolei Qu; Pedro J. J. Alvarez; Qilin Li
Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management.
Water Research | 2009
Katherine R. Zodrow; Lena Brunet; Shaily Mahendra; Dong Li; Anna Zhang; Qilin Li; Pedro J. J. Alvarez
Biofouling and virus penetration are two significant obstacles in water treatment membrane filtration. Biofouling reduces membrane permeability, increases energy costs, and decreases the lifetime of membranes. In order to effectively remove viruses, nanofiltration or reverse osmosis (both high energy filtration schemes) must be used. Thus, there is an urgent demand for low pressure membranes with anti-biofouling and antiviral properties. The antibacterial properties of silver are well known, and silver nanoparticles (nAg) are now incorporated into a wide variety of consumer products for microbial control. In this study, nAg incorporated into polysulfone ultrafiltration membranes (nAg-PSf) exhibited antimicrobial properties towards a variety of bacteria, including Escherichia coli K12 and Pseudomonas mendocina KR1, and the MS2 bacteriophage. Nanosilver incorporation also increased membrane hydrophilicity, reducing the potential for other types of membrane fouling. XPS analysis indicated a significant loss of silver from the membrane surface after a relatively short filtration period (0.4 L/cm2) even though ICP analysis of digested membrane material showed that 90% of the added silver remained in the membrane. This silver loss resulted in a significant loss of antibacterial and antiviral activity. Thus, successful fabrication of nAg-impregnated membranes needs to allow for the release of sufficient silver ions for microbial control while preventing a rapid depletion of silver.
Environmental Science & Technology | 2011
Yi Luo; Lin Xu; Michal Rysz; Yuqiu Wang; Hao Zhang; Pedro J. J. Alvarez
The occurrence and transport of 12 antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) was studied in a 72-km stretch of the Haihe River, China, and in six of its tributaries. Aqueous and sediment samples were analyzed by HPLC-MS/MS. Sulfonamides were detected at the highest concentrations (24-385 ng/L) and highest frequencies (76-100%). Eight of the 12 antibiotics likely originated from veterinary applications in swine farms and fishponds, and concentrations at these sources (0.12-47 μg/L) were 1-2 orders of magnitude higher than in the effluent of local wastewater treatment plants. Sulfachloropyridazine (SCP) was detected in all swine farm and fishpond samples (maximum concentration 47 μg/L), which suggests its potential usefulness to indicate livestock source pollution in the Haihe River basin. Hydrological and chemical factors that may influence antibiotic distribution in the Haihe River were considered by multiple regression analysis. River flow rate exerted the most significant effect on the first-order attenuation coefficient (K) for sulfonamides, quinolones, and macrolides, with higher flow rates resulting in higher K, probably due to dilution. For tetracyclines, sediment total organic matter and cation exchange capacity exerted a greater impact on K than flow rate, indicating that adsorption to sediments plays an important role in attenuating tetracycline migration. Overall, the predominance of sulfonamides in the Haihe River underscores the need to consider regulating their veterinary use and improving the management and treatment of associated releases.
ACS Nano | 2010
Jaesang Lee; Shaily Mahendra; Pedro J. J. Alvarez
The extraordinary chemical and physical properties of materials at the nanometer scale enable novel applications ranging from structural strength enhancement and energy conservation to antimicrobial properties and self-cleaning surfaces. Consequently, manufactured nanomaterials (MNMs) and nanocomposites are being considered for various uses in the construction and related infrastructure industries. To achieve environmentally responsible nanotechnology in construction, it is important to consider the lifecycle impacts of MNMs on the health of construction workers and dwellers, as well as unintended environmental effects at all stages of manufacturing, construction, use, demolition, and disposal. Here, we review state-of-the-art applications of MNMs that improve conventional construction materials, suggest likely environmental release scenarios, and summarize potential adverse biological and toxicological effects and their mitigation. Aligned with multidisciplinary assessment of the environmental implications of emerging technologies, this review seeks to promote awareness of potential benefits of MNMs in construction and stimulate the development of guidelines to regulate their use and disposal to mitigate potential adverse effects on human and environmental health.
Environmental Science & Technology | 2011
Zongming Xiu; Jie Ma; Pedro J. J. Alvarez
The antibacterial activity of silver nanoparticles (AgNPs) is partially due to the release of Ag(+), although discerning the contribution of AgNPs vs Ag(+) is challenging due to their common co-occurrence. We discerned the toxicity of Ag(+) versus a commercially available AgNP (35.4 ± 5.1 nm, coated with amorphous carbon) by conducting antibacterial assays under anaerobic conditions that preclude Ag₀ oxidation, which is a prerequisite for Ag(+) release. These AgNPs were 20× less toxic to E. coli than Ag(+) (EC₅₀: 2.04 ± 0.07 vs 0.10 ± 0.01 mg/L), and their toxicity increased 2.3-fold after exposure to air for 0.5 h (EC₅₀: 0.87 ± 0.03 mg/L) which promoted Ag(+) release. No significant difference in Ag(+) toxicity was observed between anaerobic and aerobic conditions, which rules out oxidative stress by ROS as an important antibacterial mechanism for Ag(+). The toxicity of Ag(+) (2.94 μmol/L) was eliminated by equivalent cysteine or sulfide; the latter exceeded the solubility product equilibrium constant (K(sp)), which is conducive to silver precipitation. Equivalent chloride and phosphate concentrations also reduced Ag(+) toxicity without exceeding K(sp). Thus, some common ligands can hinder the bioavailability and mitigate the toxicity of Ag(+) at relatively low concentrations that do not induce silver precipitation. Furthermore, low concentrations of chloride (0.1 mg/L) mitigated the toxicity of Ag(+) but not that of AgNPs, suggesting that previous reports of higher AgNPs toxicity than their equivalent Ag(+) concentration might be due to the presence of common ligands that preferentially decrease the bioavailability and toxicity of Ag(+). Overall, these results show that the presence of O₂ or common ligands can differentially affect the toxicity of AgNPs vs Ag(+), and underscore the importance of water chemistry in the mode of action of AgNPs.
Critical Reviews in Environmental Science and Technology | 2000
Michelle M. Scherer; Sascha Richter; Richard L. Valentine; Pedro J. J. Alvarez
Permeable reactive barriers (PRBs) are receiving a great deal of attention as an innovative, cost-effective technology for in situ clean up of groundwater contamination. A wide variety of materials are being proposed for use in PRBs, including zero-valent metals (e.g., iron metal), humic materials, oxides, surfactant-modified zeolites (SMZs), and oxygen- and nitrate-releasing compounds. PRB materials remove dissolved groundwater contaminants by immobilization within the barrier or transformation to less harmful products. The primary removal processes include: (1) sorption and precipitation, (2) chemical reaction, and (3) biologically mediated reactions. This article presents an overview of the mechanisms and factors controlling these individual processes and discusses the implications for the feasibility and long-term effectiveness of PRB technologies.
Environmental Science & Technology | 2010
Yi Luo; Daqing Mao; Michal Rysz; Qixing Zhou; Hongjie Zhang; Lin Xu; Pedro J. J. Alvarez
The occurrence of antibiotics and antibiotic resistance genes (ARGs) was quantified in water and sediment samples collected from a 72 km stretch of the Haihe River, China. Tetracycline resistance genes (tetW, tetQ, tetO, tetT, tetM, tetB, and tetS) were not detected by quantitative PCR in many samples. In contrast, sul1 and sul2 (coding for sulfonamide resistance) were present at relatively high concentrations in all (38) samples. The highest ARG concentrations detected were (7.8 ± 1.0) × 10(9) copies/g for sul1 and (1.7 ± 0.2) × 10(11) copies/g for sul2, in sediment samples collected during the summer. The corresponding total bacterial concentration (quantified with a universal 16S-rDNA probe) was (3.3 ± 0.4) × 10(12) cells/g. Sul1 and sul2 concentrations in sediments were 120-2000 times higher than that in water, indicating that sediments are an important ARG reservoir in the Haihe River. Statistical analysis indicated a positive correlation between the relative abundance of these ARGs (i.e., sul1/16S-rDNA and sul2/16S-rDNA) and the total concentration of sulfamethoxazole, sulfadiazine, plus sulfachlororyridazine, suggesting that sulfonamides exerted selective pressure for these ARGs. A class 1 integron was implicated in the propagation of sul1. Overall, the widespread distribution of sulfonamide ARGs underscores the need to better understand and mitigate their propagation in the environment and the associated risks to public health.
Water Research | 2001
Mabel Vaca Mier; Raymundo López Callejas; Ronald Gehr; Blanca Jiménez Cisneros; Pedro J. J. Alvarez
This paper describes the interactions of Pb(II), Cd(II), and Cr(VI) competing for ion-exchange sites in naturally occurring clinoptilolite. Dissolved Pb and Cd were effectively removed within 18 h in batch reactors, with higher removal efficiencies (> 95%) in the acidic pH range. The presence of Cr(VI), which can interact with these metals to form anionic complexes, significantly diminished the Pb and Cd removal efficiencies. A decrease in the efficiency of clinoptilolite to remove Pb was also observed in the high (> or = 10) pH range. This was attributed to the formation of anionic hydroxo-complexes with little affinity for cationic ion exchange sites. Pb outcompeted Cd for ion exchange sites in a flow-through column packed with clinoptilolite (contact time = 10 s). The preferential removal of Pb in column, but not in batch reactors, reflects that competitive retention can be affected by contact time because diffusion kinetics may influence the removal efficiency to a greater extent than equilibrium partitioning. Phenol, which was tested as a representative organic co-contaminant, slightly hindered heavy metal removal in batch reactors. This was attributed to the formation of organometallic complexes that cannot penetrate the zeolite exchange channels. Altogether, these results show that natural zeolites hold great potential to remove cationic heavy metal species from industrial wastewater. Nevertheless, process efficiency can be hindered by the presence of ligands that form complexes with reduced accessibility and/or affinity for ion exchange.