Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaily Mahendra is active.

Publication


Featured researches published by Shaily Mahendra.


Environmental Toxicology and Chemistry | 2008

Nanomaterials in the environment: Behavior, fate, bioavailability, and effects

Stephen J. Klaine; Pedro J. J. Alvarez; Graeme E. Batley; Teresa F. Fernandes; Richard D. Handy; Delina Y. Lyon; Shaily Mahendra; Mike J. McLaughlin; Jamie R. Lead

The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.


Water Research | 2008

Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications

Qilin Li; Shaily Mahendra; Delina Y. Lyon; Lena Brunet; Michael V. Liga; Dong Li; Pedro J. J. Alvarez

The challenge to achieve appropriate disinfection without forming harmful disinfection byproducts by conventional chemical disinfectants, as well as the growing demand for decentralized or point-of-use water treatment and recycling systems calls for new technologies for efficient disinfection and microbial control. Several natural and engineered nanomaterials have demonstrated strong antimicrobial properties through diverse mechanisms including photocatalytic production of reactive oxygen species that damage cell components and viruses (e.g. TiO2, ZnO and fullerol), compromising the bacterial cell envelope (e.g. peptides, chitosan, carboxyfullerene, carbon nanotubes, ZnO and silver nanoparticles (nAg)), interruption of energy transduction (e.g. nAg and aqueous fullerene nanoparticles (nC(60))), and inhibition of enzyme activity and DNA synthesis (e.g. chitosan). Although some nanomaterials have been used as antimicrobial agents in consumer products including home purification systems as antimicrobial agents, their potential for disinfection or microbial control in system level water treatment has not been carefully evaluated. This paper reviews the antimicrobial mechanisms of several nanoparticles, discusses their merits, limitations and applicability for water disinfection and biofouling control, and highlights research needs to utilize novel nanomaterials for water treatment applications.


Water Research | 2009

Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal.

Katherine R. Zodrow; Lena Brunet; Shaily Mahendra; Dong Li; Anna Zhang; Qilin Li; Pedro J. J. Alvarez

Biofouling and virus penetration are two significant obstacles in water treatment membrane filtration. Biofouling reduces membrane permeability, increases energy costs, and decreases the lifetime of membranes. In order to effectively remove viruses, nanofiltration or reverse osmosis (both high energy filtration schemes) must be used. Thus, there is an urgent demand for low pressure membranes with anti-biofouling and antiviral properties. The antibacterial properties of silver are well known, and silver nanoparticles (nAg) are now incorporated into a wide variety of consumer products for microbial control. In this study, nAg incorporated into polysulfone ultrafiltration membranes (nAg-PSf) exhibited antimicrobial properties towards a variety of bacteria, including Escherichia coli K12 and Pseudomonas mendocina KR1, and the MS2 bacteriophage. Nanosilver incorporation also increased membrane hydrophilicity, reducing the potential for other types of membrane fouling. XPS analysis indicated a significant loss of silver from the membrane surface after a relatively short filtration period (0.4 L/cm2) even though ICP analysis of digested membrane material showed that 90% of the added silver remained in the membrane. This silver loss resulted in a significant loss of antibacterial and antiviral activity. Thus, successful fabrication of nAg-impregnated membranes needs to allow for the release of sufficient silver ions for microbial control while preventing a rapid depletion of silver.


ACS Nano | 2010

Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations

Jaesang Lee; Shaily Mahendra; Pedro J. J. Alvarez

The extraordinary chemical and physical properties of materials at the nanometer scale enable novel applications ranging from structural strength enhancement and energy conservation to antimicrobial properties and self-cleaning surfaces. Consequently, manufactured nanomaterials (MNMs) and nanocomposites are being considered for various uses in the construction and related infrastructure industries. To achieve environmentally responsible nanotechnology in construction, it is important to consider the lifecycle impacts of MNMs on the health of construction workers and dwellers, as well as unintended environmental effects at all stages of manufacturing, construction, use, demolition, and disposal. Here, we review state-of-the-art applications of MNMs that improve conventional construction materials, suggest likely environmental release scenarios, and summarize potential adverse biological and toxicological effects and their mitigation. Aligned with multidisciplinary assessment of the environmental implications of emerging technologies, this review seeks to promote awareness of potential benefits of MNMs in construction and stimulate the development of guidelines to regulate their use and disposal to mitigate potential adverse effects on human and environmental health.


Environmental Toxicology and Chemistry | 2010

Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana

Chang Woo Lee; Shaily Mahendra; Katherine R. Zodrow; Dong Li; Yu-Chang Tsai; Janet Braam; Pedro J. J. Alvarez

Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.


Bioresource Technology | 2010

Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene.

Zongming Xiu; Zhaohui Jin; Tielong Li; Shaily Mahendra; Gregory V. Lowry; Pedro J. J. Alvarez

Nano-scale zero-valent iron particles (NZVI) are increasingly being used to treat sites contaminated with chlorinated solvents. This study investigated the effect of NZVI on dechlorinating microorganisms that participate in the anaerobic bioremediation of such sites. NZVI can have a biostimulatory effect associated with water-derived cathodic H(2) production during its anaerobic corrosion (730+/-30 micromol H(2) was produced in 166 h in abiotic controls with 1 g/L NZVI) or an inhibitory effect upon contact with cell surfaces (assessed by transmission electron microscopy). Methanogens, which are known to compete for H(2) with dechlorinators, were significantly biostimulated by NZVI and methane production increased relative to NZVI-free controls from 58+/-5 to 275+/-2 micromol. In contrast, bacteria dechlorinating TCE were inhibited by NZVI, and the first-order degradation rate coefficient decreased from 0.115+/-0.005 h(-1) (R(2)=0.99) for controls to 0.053+/-0.003 h(-1) (R(2)=0.98) for treatments with 1 g/L NZVI. Ethene production from TCE was initially inhibited by NZVI, but after 331 h increased to levels observed for an NZVI-free system (7.6+/-0.3 micromol ethene produced in 502 h compared to 11.6+/-0.5 mmol in the NZVI-free system and 3.8+/-0.3 micromol ethene for NZVI alone). Apparently, cathodic H(2) was utilized as electron donor by dechlorinating bacteria, which recovered following the partial oxidation and presumably passivation of the NZVI. Overall, these results suggest that reductive treatment of chlorinated solvent sites with NZVI might be enhanced by the concurrent or subsequent participation of bacteria that exploit cathodic depolarization and reductive dechlorination as metabolic niches.


Macromolecular Rapid Communications | 2009

In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films

Anubha Goyal; Ashavani Kumar; Prabir Patra; Shaily Mahendra; Salomeh Tabatabaei; Pedro J. J. Alvarez; George John; Pulickel M. Ajayan

We demonstrate a simple one-step method for synthesizing noble metal nanoparticle embedded free standing polydimethylsiloxane (PDMS) composite films. The process involves preparing a homogenous mixture of metal salt (silver, gold and platinum), silicone elastomer and the curing agent (hardener) followed by curing. During the curing process, the hardener crosslinks the elastomer and simultaneously reduces the metal salt to form nanoparticles. This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the PDMS matrix. The films were characterized using UV-Vis spectroscopy, transmission electron microscopy and X-ray photoemission spectroscopy. The nanoparticle-PDMS films have a higher Youngs modulus than pure PDMS films and also show enhanced antibacterial properties. The metal nanoparticle-PDMS films could be used for a number of applications such as for catalysis, optical and biomedical devices and gas separation membranes.


Water Research | 2010

1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples

Mengyan Li; Stephanie Fiorenza; James R. Chatham; Shaily Mahendra; Pedro J. J. Alvarez

1,4-Dioxane biodegradation was investigated in microcosms prepared with groundwater and soil from an impacted site in Alaska. In addition to natural attenuation conditions (i.e., no amendments), the following treatments were tested: (a) biostimulation by addition of 1-butanol (a readily available auxiliary substrate) and inorganic nutrients; and (b) bioaugmentation with Pseudonocardia dioxanivorans CB1190, a well-characterized dioxane-degrading bacterium, or with Pseudonocardia antarctica DVS 5a1, a bacterium isolated from Antarctica. Biostimulation enhanced the degradation of 50 mg L(-1) dioxane by indigenous microorganisms (about 0.01 mg dioxane d(-1) mg protein(-1)) at both 4 and 14 degrees C, with a simultaneous increase in biomass. A more pronounced enhancement was observed through bioaugmentation. Microcosms with 50 mg L(-1) initial dioxane (representing source-zone contamination) and augmented with CB1190 degraded dioxane fastest (0.16 +/- 0.04 mg dioxane d(-1) mg protein(-1)) at 14 degrees C, and the degradation rate decreased dramatically at 4 degrees C (0.021 +/- 0.007 mg dioxane d(-1) mg protein(-1)). In contrast, microcosms with DVS 5a1 degraded dioxane at similar rates at 4 degrees C and 14 degrees C (0.018 +/- 0.004 and 0.015 +/- 0.006 mg dioxane d(-1) mg protein(-1), respectively). DVS 5a1 outperformed CB1190 when the initial dioxane concentration was low (500 microg L(-1), which is representative of the leading edge of plumes). This indicates differences in competitive advantages of these two strains. Natural attenuation microcosms also showed significant degradation over 6 months when the initial dioxane concentration was 500 microg L(-1). This is the first study to report the potential for dioxane bioremediation and natural attenuation of contaminated groundwater in sensitive cold-weather ecosystems such as the Arctic.


Journal of Bacteriology | 2011

Genome Sequence of the 1,4-Dioxane-Degrading Pseudonocardia dioxanivoransStrain CB1190

Christopher M. Sales; Shaily Mahendra; Ariel Grostern; Rebecca E. Parales; Lynne Goodwin; Tanja Woyke; Matt Nolan; Alla Lapidus; Olga Chertkov; Galina Ovchinnikova; Alexander Sczyrba; Lisa Alvarez-Cohen

Pseudonocardia dioxanivorans CB1190 is the first bacterium reported to be capable of growth on the environmental contaminant 1,4-dioxane and the first member of the genus Pseudonocardia for which there is an annotated genome sequence. Preliminary analysis of the genome (chromosome and three plasmids) indicates that strain CB1190 possesses several multicomponent monooxygenases that could be involved in the aerobic degradation of 1,4-dioxane and other environmental contaminants.


Chemosphere | 2013

The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.

Shaily Mahendra; Ariel Grostern; Lisa Alvarez-Cohen

1,4-Dioxane (dioxane), a probable human carcinogen, is used as a solvent stabilizer for 1,1,1-trichloroethane (TCA) and other chlorinated solvents. Consequently, TCA and its abiotic breakdown product 1,1-dichloroethene (DCE) are common co-contaminants of dioxane in groundwater. The aerobic degradation of dioxane by microorganisms has been demonstrated in laboratory studies, but the potential effects of environmentally relevant chlorinated solvent co-contaminants on dioxane biodegradation have not yet been investigated. This work evaluated the effects of TCA and DCE on the transformation of dioxane by dioxane-metabolizing strain Pseudonocardia dioxanivorans CB1190, dioxane co-metabolizing strain Pseudonomas mendocina KR1, as well as Escherichia coli expressing the toluene monooxygenase of strain KR1. In all experiments, both TCA and DCE inhibited the degradation of dioxane at the tested concentrations. The inhibition was not competitive and was reversible for strain CB1190, which did not transform the chlorinated solvents. For both strain KR1 and toluene monooxygenase-expressing E. coli, inhibition of dioxane degradation by chlorinated solvents was competitive and irreversible, and the chlorinated solvents were degraded concurrently with dioxane. These data suggest that the strategies for biostimulation or bioaugmentation of dioxane will need to consider the presence of chlorinated solvents during site remediation.

Collaboration


Dive into the Shaily Mahendra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M.V. Hoek

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge