Verónica Fernandes
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Verónica Fernandes.
Molecular Biology and Evolution | 2012
Pedro Soares; Farida Alshamali; Joana B. Pereira; Verónica Fernandes; Nuno Silva; Carla Afonso; Marta D. Costa; Eliška Musilová; Vincent Macaulay; Martin B. Richards; Viktor Černý; Luísa Pereira
Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.
American Journal of Human Genetics | 2009
Luísa Pereira; Fernando Freitas; Verónica Fernandes; Joana B. Pereira; Marta D. Costa; Stephanie Costa; Valdemar Máximo; Vincent Macaulay; Ricardo Rocha; David C. Samuels
We analyzed the current status (as of the end of August 2008) of human mitochondrial genomes deposited in GenBank, amounting to 5140 complete or coding-region sequences, in order to present an overall picture of the diversity present in the mitochondrial DNA of the global human population. To perform this task, we developed mtDNA-GeneSyn, a computer tool that identifies and exhaustedly classifies the diversity present in large genetic data sets. The diversity observed in the 5140 human mitochondrial genomes was compared with all possible transitions and transversions from the standard human mitochondrial reference genome. This comparison showed that tRNA and rRNA secondary structures have a large effect in limiting the diversity of the human mitochondrial sequences, whereas for the protein-coding genes there is a bias toward less variation at the second codon positions. The analysis of the observed amino acid variations showed a tolerance of variations that convert between the amino acids V, I, A, M, and T. This defines a group of amino acids with similar chemical properties that can interconvert by a single transition.
PLOS ONE | 2013
Teresa Rito; Martin B. Richards; Verónica Fernandes; Farida Alshamali; Viktor Cerny; Luísa Pereira; Pedro Soares
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.
Nature Communications | 2013
Marta D. Costa; Joana B. Pereira; Maria Pala; Verónica Fernandes; Anna Olivieri; Alessandro Achilli; Ugo A. Perego; Sergei Rychkov; Oksana Yu. Naumova; Jiři Hatina; Scott R. Woodward; Ken Khong Eng; Vincent Macaulay; Martin Carr; Pedro Soares; Luísa Pereira; Martin B. Richards
The origins of Ashkenazi Jews remain highly controversial. Like Judaism, mitochondrial DNA is passed along the maternal line. Its variation in the Ashkenazim is highly distinctive, with four major and numerous minor founders. However, due to their rarity in the general population, these founders have been difficult to trace to a source. Here we show that all four major founders, ~40% of Ashkenazi mtDNA variation, have ancestry in prehistoric Europe, rather than the Near East or Caucasus. Furthermore, most of the remaining minor founders share a similar deep European ancestry. Thus the great majority of Ashkenazi maternal lineages were not brought from the Levant, as commonly supposed, nor recruited in the Caucasus, as sometimes suggested, but assimilated within Europe. These results point to a significant role for the conversion of women in the formation of Ashkenazi communities, and provide the foundation for a detailed reconstruction of Ashkenazi genealogical history.
BMC Evolutionary Biology | 2010
Luísa Pereira; Nuno Silva; Ricardo Franco-Duarte; Verónica Fernandes; Joana B. Pereira; Marta D. Costa; Haidé Martins; Pedro Soares; Doron M. Behar; Martin B. Richards; Vincent Macaulay
BackgroundThe archaeology of North Africa remains enigmatic, with questions of population continuity versus discontinuity taking centre-stage. Debates have focused on population transitions between the bearers of the Middle Palaeolithic Aterian industry and the later Upper Palaeolithic populations of the Maghreb, as well as between the late Pleistocene and Holocene.ResultsImproved resolution of the mitochondrial DNA (mtDNA) haplogroup U6 phylogeny, by the screening of 39 new complete sequences, has enabled us to infer a signal of moderate population expansion using Bayesian coalescent methods. To ascertain the time for this expansion, we applied both a mutation rate accounting for purifying selection and one with an internal calibration based on four approximate archaeological dates: the settlement of the Canary Islands, the settlement of Sardinia and its internal population re-expansion, and the split between haplogroups U5 and U6 around the time of the first modern human settlement of the Near East.ConclusionsA Bayesian skyline plot placed the main expansion in the time frame of the Late Pleistocene, around 20 ka, and spatial smoothing techniques suggested that the most probable geographic region for this demographic event was to the west of North Africa. A comparison with U6s European sister clade, U5, revealed a stronger population expansion at around this time in Europe. Also in contrast with U5, a weak signal of a recent population expansion in the last 5,000 years was observed in North Africa, pointing to a moderate impact of the late Neolithic on the local population size of the southern Mediterranean coast.
BMC Evolutionary Biology | 2010
Nourdin Harich; Marta D. Costa; Verónica Fernandes; Mostafa Kandil; Joana B. Pereira; Nuno Silva; Luísa Pereira
BackgroundA proportion of 1/4 to 1/2 of North African female pool is made of typical sub-Saharan lineages, in higher frequencies as geographic proximity to sub-Saharan Africa increases. The Sahara was a strong geographical barrier against gene flow, at least since 5,000 years ago, when desertification affected a larger region, but the Arab trans-Saharan slave trade could have facilitate enormously this migration of lineages. Till now, the genetic consequences of these forced trans-Saharan movements of people have not been ascertained.ResultsThe distribution of the main L haplogroups in North Africa clearly reflects the known trans-Saharan slave routes: West is dominated by L1b, L2b, L2c, L2d, L3b and L3d; the Center by L3e and some L3f and L3w; the East by L0a, L3h, L3i, L3x and, in common with the Center, L3f and L3w; while, L2a is almost everywhere. Ages for the haplogroups observed in both sides of the Saharan desert testify the recent origin (holocenic) of these haplogroups in sub-Saharan Africa, claiming a recent introduction in North Africa, further strengthened by the no detection of local expansions.ConclusionsThe interpolation analyses and complete sequencing of present mtDNA sub-Saharan lineages observed in North Africa support the genetic impact of recent trans-Saharan migrations, namely the slave trade initiated by the Arab conquest of North Africa in the seventh century. Sub-Saharan people did not leave traces in the North African maternal gene pool for the time of its settlement, some 40,000 years ago.
Molecular Biology and Evolution | 2011
Viktor Černý; Connie J. Mulligan; Verónica Fernandes; Nuno Silva; Farida Alshamali; Amy L. Non; Nourdin Harich; Lotfi Cherni; Amel Ben Ammar El Gaaied; Ali Al-Meeri; Luísa Pereira
Widespread interest in the first successful Out of Africa dispersal of modern humans ∼60-80 thousand years ago via a southern migration route has overshadowed the study of later periods of South Arabian prehistory. In this work, we show that the post-Last Glacial Maximum period of the past 20,000 years, during which climatic conditions were becoming more hospitable, has been a significant time in the formation of the extant genetic composition and population structure of this region. This conclusion is supported by the internal diversification displayed in the highly resolved phylogenetic tree of 89 whole mitochondrial genomes (71 being newly presented here) for haplogroup R0a-the most frequent and widespread haplogroup in Arabia. Additionally, two geographically specific clades (R0a1a1a and R0a2f1) have been identified in non-Arabic speaking peoples such as the Soqotri and Mahri living in the southern part of the Arabian Peninsula where a past refugium was identified by independent archaeological studies. Estimates of time to the most recent common ancestor of these lineages match the earliest archaeological evidence for seafaring activity in the peninsula in the sixth millennium BC.
Science | 2017
Etienne Patin; Marie Lopez; Rebecca Grollemund; Paul Verdu; Christine Harmant; Hélène Quach; Guillaume Laval; George H. Perry; Luis B. Barreiro; Alain Froment; Evelyne Heyer; Achille Massougbodji; Cesar Fortes-Lima; Florence Migot-Nabias; Gil Bellis; Jean-Michel Dugoujon; Joana B. Pereira; Verónica Fernandes; Luísa Pereira; Lolke Van der Veen; Patrick Mouguiama-Daouda; Carlos Bustamante; Jean-Marie Hombert; Lluis Quintana-Murci
Genetic analysis reveals the complex history of sub-Saharan Africans and African Americans. On the history of Bantu speakers Africans are underrepresented in many surveys of genetic diversity, which hinders our ability to study human evolution and the health of modern populations. Patin et al. examined the genetic diversity of Bantu speakers, who account for one-third of sub-Saharan Africans. They then modeled the timing of migration and admixture during the Bantu expansion. The analysis revealed adaptive introgression of genes that likely originated in other African populations, including specific immune-related genes. Applying this information to African Americans suggests that gene flow from Africa into the Americas was more complex than previously thought. Science, this issue p. 543 Bantu languages are spoken by about 310 million Africans, yet the genetic history of Bantu-speaking populations remains largely unexplored. We generated genomic data for 1318 individuals from 35 populations in western central Africa, where Bantu languages originated. We found that early Bantu speakers first moved southward, through the equatorial rainforest, before spreading toward eastern and southern Africa. We also found that genetic adaptation of Bantu speakers was facilitated by admixture with local populations, particularly for the HLA and LCT loci. Finally, we identified a major contribution of western central African Bantu speakers to the ancestry of African Americans, whose genomes present no strong signals of natural selection. Together, these results highlight the contribution of Bantu-speaking peoples to the complex genetic history of Africans and African Americans.
American Journal of Physical Anthropology | 2011
Eliška Musilová; Verónica Fernandes; Nuno Silva; Pedro Soares; Farida Alshamali; Nourdin Harich; Lotfi Cherni; Amel Ben Ammar El Gaaied; Ali Al-Meeri; Luísa Pereira; Viktor Černý
Archaeological studies have revealed cultural connections between the two sides of the Red Sea dating to prehistory. The issue has still not been properly addressed, however, by archaeogenetics. We focus our attention here on the mitochondrial haplogroup HV1 that is present in both the Arabian Peninsula and East Africa. The internal variation of 38 complete mitochondrial DNA sequences (20 of them presented here for the first time) affiliated into this haplogroup testify to its emergence during the late glacial maximum, most probably in the Near East, with subsequent dispersion via population expansions when climatic conditions improved. Detailed phylogeography of HV1 sequences shows that more recent demographic upheavals likely contributed to their spread from West Arabia to East Africa, a finding concordant with archaeological records suggesting intensive maritime trade in the Red Sea from the sixth millennium BC onwards. Closer genetic exchanges are apparent between the Horn of Africa and Yemen, while Egyptian HV1 haplotypes seem to be more similar to the Near Eastern ones.
PLOS ONE | 2015
Verónica Fernandes; Petr Triska; Joana B. Pereira; Farida Alshamali; Teresa Rito; Alison Machado; Zuzana Fajkošová; Bruno Cavadas; Viktor Černý; Pedro Soares; Martin B. Richards; Luísa Pereira
At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (∼8–37 generations for African input into Arabia, and 30–90 generations for “back-to-Africa” migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ∼2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ∼8 ka. The main “back-to-Africa” migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa.