Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peggi M. Angel is active.

Publication


Featured researches published by Peggi M. Angel.


Analytical Chemistry | 2012

Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry

Peggi M. Angel; Jeffrey M. Spraggins; H. Scott Baldwin; Richard M. Caprioli

We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix, and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to 5-fold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution.


Molecular & Cellular Proteomics | 2011

From Whole-body Sections Down to Cellular Level, Multiscale Imaging of Phospholipids by MALDI Mass Spectrometry

Pierre Chaurand; Dale S. Cornett; Peggi M. Angel; Richard M. Caprioli

Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.


Analytical Chemistry | 2015

Ion Mobility-Derived Collision Cross Section As an Additional Measure for Lipid Fingerprinting and Identification

Giuseppe Paglia; Peggi M. Angel; Jonathan P. Williams; Keith Richardson; Hernando J. Olivos; J. Will Thompson; Lochana C. Menikarachchi; Steven Lai; Callee Walsh; Arthur Moseley; Robert S. Plumb; David F. Grant; Bernhard O. Palsson; James I. Langridge; Scott Geromanos; Giuseppe Astarita

Despite recent advances in analytical and computational chemistry, lipid identification remains a significant challenge in lipidomics. Ion-mobility spectrometry provides an accurate measure of the molecules’ rotationally averaged collision cross-section (CCS) in the gas phase and is thus related to ionic shape. Here, we investigate the use of CCS as a highly specific molecular descriptor for identifying lipids in biological samples. Using traveling wave ion mobility mass spectrometry (MS), we measured the CCS values of over 200 lipids within multiple chemical classes. CCS values derived from ion mobility were not affected by instrument settings or chromatographic conditions, and they were highly reproducible on instruments located in independent laboratories (interlaboratory RSD < 3% for 98% of molecules). CCS values were used as additional molecular descriptors to identify brain lipids using a variety of traditional lipidomic approaches. The addition of CCS improved the reproducibility of analysis in a liquid chromatography-MS workflow and maximized the separation of isobaric species and the signal-to-noise ratio in direct-MS analyses (e.g., “shotgun” lipidomics and MS imaging). These results indicate that adding CCS to databases and lipidomics workflows increases the specificity and selectivity of analysis, thus improving the confidence in lipid identification compared to traditional analytical approaches. The CCS/accurate-mass database described here is made publicly available.


Biochemistry | 2013

Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping.

Peggi M. Angel; Richard M. Caprioli

Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples.


Methods of Molecular Biology | 2010

Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry.

Michelle L. Reyzer; Pierre Chaurand; Peggi M. Angel; Richard M. Caprioli

The determination of the localization of various compounds in a whole animal is valuable for many applications, including pharmaceutical absorption, distribution, metabolism, and excretion (ADME) studies and biomarker discovery. Imaging mass spectrometry is a powerful tool for localizing compounds of biological interest with molecular specificity and relatively high resolution. Utilizing imaging mass spectrometry for whole-body animal sections offers considerable analytical advantages compared to traditional methods, such as whole-body autoradiography, but the experiment is not straightforward. This chapter addresses the advantages and unique challenges that the application of imaging mass spectrometry to whole-body animal sections entails, including discussions of sample preparation, matrix application, signal normalization, and image generation. Lipid and protein images obtained from whole-body tissue sections of mouse pups are presented along with detailed protocols for the experiments.


PLOS ONE | 2013

Differential Intrahepatic Phospholipid Zonation in Simple Steatosis and Nonalcoholic Steatohepatitis

Julia Wattacheril; Erin H. Seeley; Peggi M. Angel; Heidi Chen; Benjamin P. Bowen; Christian Lanciault; Richard M. Caprioli; Naji N. Abumrad; Charles R. Flynn

Nonalcoholic fatty liver disease (NAFLD) occurs frequently in a setting of obesity, dyslipidemia and insulin resistance, but the etiology of the disease, particularly the events favoring progression to nonalcoholic steatohepatitis (NASH) as opposed to simple steatosis (SS), are not fully understood. Based on known zonation patterns in protein, glucose and lipid metabolism, coupled with evidence that phosphatidylcholine may play a role in NASH pathogenesis, we hypothesized that phospholipid zonation exists in liver and that specific phospholipid abundance and distribution may be associated with histologic disease. A survey of normal hepatic protein expression profiles in the Human Protein Atlas revealed pronounced zonation of enzymes involved in lipid utilization and storage, particularly those facilitating phosphatidylcholine (PC) metabolism. Immunohistochemistry of obese normal, SS and NASH liver specimens with anti-phosphatidylethanomine N-methyltransferase (PEMT) antibodies showed a progressive decrease in the zonal distribution of this PC biosynthetic enzyme. Phospholipid quantitation by liquid chromatography mass spectrometry (LC-MS) in hepatic extracts of Class III obese patients with increasing NAFLD severity revealed that most PC species with 32, 34 and 36 carbons as well as total PC abundance was decreased with SS and NASH. Matrix assisted laser desorption ionization - imaging mass spectrometry (MALDI-IMS) imaging revealed strong zonal distributions for 32, 34 and 36 carbon PCs in controls (minimal histologic findings) and SS that was lost in NASH specimens. Specific lipid species such as PC 34∶1 and PC 36∶2 best illustrated this phenomenon. These findings suggest that phospholipid zonation may be associated with the presence of an intrahepatic proinflammatory phenotype and thus have broad implications in the etiopathogenesis of NASH.


Journal of Proteome Research | 2011

Networked-based characterization of extracellular matrix proteins from adult mouse pulmonary and aortic valves.

Peggi M. Angel; David Nusinow; Christopher B. Brown; Kate Violette; Joey V. Barnett; Bing Zhang; H. Scott Baldwin; Richard M. Caprioli

A precise mixture of extracellular matrix (ECM) secreted by valvular cells forms a scaffold that lends the heart valve the exact mechanical and tensile strength needed for accurate hemodynamic performance. ECM proteins are a key component of valvular endothelial cell (VEC)-valvular interstitial cell (VIC) communication essential for maintenance of the valve structure. This study reports the healthy adult pulmonary and aortic valve proteomes characterized by LC-MS/MS, resulting in 2710 proteins expressed by 1513 genes, including over 300 abundant ECM proteins. Surprisingly, this study defines a distinct proteome for each semilunar valve. Protein-protein networking (PPN) was used as a tool to direct selection of proteomic candidates for biological investigation. Local PPN for nidogen 1 (Nid1), biglycan (Bgn), elastin microfibril interface-located protein 1 (Emilin-1), and milk fat globule-EGF factor 8 protein (Mfge8) were enriched with proteins essential to valve function and produced biological functions highly relevant to valve biology. Immunofluorescent investigations demonstrated that these proteins are functionally distributed within the pulmonary and aortic valve structure, indicative of important contribution to valve function. This study yields new insight into protein expression contributing to valvular maintenance and health and provides a platform for unbiased assessment of protein alterations during disease processes.


Rapid Communications in Mass Spectrometry | 2011

Detergent enhancement of on-tissue protein analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.

Veronica Mainini; Peggi M. Angel; Fulvio Magni; Richard M. Caprioli

Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS) is a molecular technology that allows simultaneous investigation of the content and spatial distribution of molecules within tissue. In this work, we examine different classes of detergents, the anionic sodium dodecyl sulfate (SDS), the nonionic detergents Triton X-100, Tween 20 and Tween 80, and the zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) for use in MALDI IMS of analytes above m/z 4000. These detergents were found to be compatible with MALDI MS and did not cause signal suppression relative to non-detergent applications and did not produce interfering background signals. In general, these detergents enhanced signal acquisition within the mass range m/z 4-40 000. Adding detergents into the matrix was comparable with the separate application of detergent and matrix. Evaluation of spectra collected from organ-specific regions of a whole mouse pup section showed that different detergents perform optimally with different organs, indicating that detergent selection should be optimized on the specific tissue for maximum gain. These data show the utility of detergents towards enhancement of protein signals for on-tissue MALDI IMS analysis.


Proteomics | 2011

Membrane proteomic signatures of karyotypically normal and abnormal human embryonic stem cell lines and derivatives

Brian A. Gerwe; Peggi M. Angel; Franklin D. West; Kowser Hasneen; Amber Young; Ron Orlando; Steven L. Stice

Cultured human embryonic stem cells (hESCs) and derived derivatives contain heterogeneous cell populations with varying degrees of differentiation and karyotypic stability. The inability to isolate homogenous population presents a challenge toward cell‐based applications and therapies. A proteomics approach was utilized to discover novel membrane proteins able to distinguish between the hESC lines BG01, WA09, and abBG02 (trisomy 12, 14, 17 and an extra copy of the X chromosome), along with WA09‐derived human neural progenitor (hNP) cells. Membrane protein signatures were developed using sucrose‐gradient isolation, 1‐D gel electrophoresis followed by in‐gel digestion and analysis by reverse phase chromatography coupled to ion trap‐FT‐ICR. At a ≤1.0% false discovery rate, 1918 proteins were identified; 775 were annotated as membrane proteins and 720 predicted to contain transmembrane spanning regions. Flow cytometry was used to validate cell surface expression of selected proteins. Junctional adhesion molecule 1 expression was shared by BG01, BG02 and abBG02 hESC lines. Dysferlin expression was specific to the WA09 hESC line and not the derived neural or mesenchymal progenitors. Ciliary neurotrophic factor receptor distinguished WA09‐derived human neural progenitor cells from the parent hESC population, and WA09‐derived mesenchymal progenitor cells. This study expands the current membrane protein data set for hESCs.


PLOS ONE | 2013

Cell-Autonomous and Non-Cell-Autonomous Roles for Irf6 during Development of the Tongue

Steven Goudy; Peggi M. Angel; Britni Jacobs; Cynthia R. Hill; Veronica Mainini; Arianna Smith; Youssef A. Kousa; Richard M. Caprioli; Lawrence S. Prince; Scott Baldwin; Brian C. Schutte

Interferon regulatory factor 6 (IRF6) encodes a highly conserved helix-turn-helix DNA binding protein and is a member of the interferon regulatory family of DNA transcription factors. Mutations in IRF6 lead to isolated and syndromic forms of cleft lip and palate, most notably Van der Woude syndrome (VWS) and Popliteal Ptyerigium Syndrome (PPS). Mice lacking both copies of Irf6 have severe limb, skin, palatal and esophageal abnormalities, due to significantly altered and delayed epithelial development. However, a recent report showed that MCS9.7, an enhancer near Irf6, is active in the tongue, suggesting that Irf6 may also be expressed in the tongue. Indeed, we detected Irf6 staining in the mesoderm-derived muscle during development of the tongue. Dual labeling experiments demonstrated that Irf6 was expressed only in the Myf5+ cell lineage, which originates from the segmental paraxial mesoderm and gives rise to the muscles of the tongue. Fate mapping of the segmental paraxial mesoderm cells revealed a cell-autonomous Irf6 function with reduced and poorly organized Myf5+ cell lineage in the tongue. Molecular analyses showed that the Irf6−/− embryos had aberrant cytoskeletal formation of the segmental paraxial mesoderm in the tongue. Fate mapping of the cranial neural crest cells revealed non-cell-autonomous Irf6 function with the loss of the inter-molar eminence. Loss of Irf6 function altered Bmp2, Bmp4, Shh, and Fgf10 signaling suggesting that these genes are involved in Irf6 signaling. Based on these data, Irf6 plays important cell-autonomous and non-cell-autonomous roles in muscular differentiation and cytoskeletal formation in the tongue.

Collaboration


Dive into the Peggi M. Angel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin P. Bowen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles R. Flynn

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naji N. Abumrad

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge