Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin P. Bowen is active.

Publication


Featured researches published by Benjamin P. Bowen.


Diabetes | 2010

Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes

Hyonson Hwang; Benjamin P. Bowen; Natalie Lefort; Charles R. Flynn; Elena A. De Filippis; Christine Roberts; Christopher C. Smoke; Christian Meyer; Kurt Højlund; Zhengping Yi; Lawrence J. Mandarino

OBJECTIVE Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors. RESULTS Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA (P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased). CONCLUSIONS The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance.


Journal of the American Society for Mass Spectrometry | 2010

Dealing with the unknown: Metabolomics and Metabolite Atlases

Benjamin P. Bowen; Trent R. Northen

Metabolomics is the comprehensive profiling of the small molecule composition of a biological sample. Since metabolites are often the indirect products of gene expression, this approach is being used to provide new insights into a variety of biological systems (clinical, bioenergy, etc.). A grand challenge for metabolomics is the complexity of the data, which often include many experimental artifacts. This is compounded by the tremendous chemical diversity of metabolites. Identification of each uncharacterized metabolite is in many ways its own puzzle (compared with proteomics, which is based on predictable fragmentation patterns of polypeptides). Therefore, effective data reduction/prioritization strategies are critical for this rapidly developing field. Here we review liquid chromatography electrospray ionization mass spectrometry (LC/MS)-based metabolomics, methods for feature finding/prioritization, approaches for identifying unknown metabolites, and construction of method specific ‘Metabolite Atlases’.


Biophysical Journal | 2003

Characterization of Chlorobium tepidum Chlorosomes: A Calculation of Bacteriochlorophyll c per Chlorosome and Oligomer Modeling

Gabriel A. Montaño; Benjamin P. Bowen; Jeffrey T. LaBelle; Neal W. Woodbury; Vincent B. Pizziconi; Robert E. Blankenship

The bacteriochlorophyll (Bchl) c content and organization was determined for Chlorobium (Cb.) tepidum chlorosomes, the light-harvesting complexes from green photosynthetic bacteria, using fluorescence correlation spectroscopy and atomic force microscopy. Single-chlorosome fluorescence data was analyzed in terms of the correlation of the fluorescence intensity with time. Using this technique, known as fluorescence correlation spectroscopy, chlorosomes were shown to have a hydrodynamic radius (Rh) of 25 +/- 3.2 nm. This technique was also used to determine the concentration of chlorosomes in a sample, and pigment extraction and quantitation was used to determine the molar concentration of Bchl c present. From these data, a number of approximately 215,000 +/- 80,000 Bchl c per chlorosome was determined. Homogeneity of the sample was further characterized by dynamic light scattering, giving a single population of particles with a hydrodynamic radius of 26.8 +/- 3.7 nm in the sample. Tapping-mode atomic force microscopy (TMAFM) was used to determine the x,y,z dimensions of chlorosomes present in the sample. The results of the TMAFM studies indicated that the average chlorosome dimensions for Cb. tepidum was 174 +/- 8.3 x 91.4 +/- 7.7 x 10.9 +/- 2.71 nm and an overall average volume 90,800 nm(3) for the chlorosomes was determined. The data collected from these experiments as well as a model for Bchl c aggregate dimensions was used to determine possible arrangements of Bchl c oligomers in the chlorosomes. The results obtained in this study have significant implications on chlorosome structure and architecture, and will allow a more thorough investigation of the energetics of photosynthetic light harvesting in green bacteria.


Diabetes | 2010

Increased Reactive Oxygen Species Production and Lower Abundance of Complex I Subunits and Carnitine Palmitoyltransferase 1B Protein Despite Normal Mitochondrial Respiration in Insulin-Resistant Human Skeletal Muscle

Natalie Lefort; Brian Glancy; Benjamin P. Bowen; Wayne T. Willis; Zachary Bailowitz; Elena A. De Filippis; Colleen M. Brophy; Christian Meyer; Kurt Højlund; Zhengping Yi; Lawrence J. Mandarino

OBJECTIVE The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein abundance present in insulin-resistant muscle. RESEARCH DESIGN AND METHODS Mitochondria were isolated from vastus lateralis muscle from lean and insulin-sensitive individuals and from obese and insulin-resistant individuals who were otherwise healthy. Respiration and reactive oxygen species (ROS) production rates were measured in vitro. Relative abundances of proteins detected by mass spectrometry were determined using a normalized spectral abundance factor method. RESULTS NADH- and FADH2-linked maximal respiration rates were similar between lean and obese individuals. Rates of pyruvate and palmitoyl-dl-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine palmitoyltransferase 1B). CONCLUSIONS We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance.


The ISME Journal | 2013

Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust

Lara Rajeev; Ulisses Nunes da Rocha; Niels Klitgord; Eric G. Luning; Julian L. Fortney; Seth D. Axen; Patrick M. Shih; Nicholas J. Bouskill; Benjamin P. Bowen; Cheryl A. Kerfeld; Ferran Garcia-Pichel; Eoin L. Brodie; Trent R. Northen; Aindrila Mukhopadhyay

Biological soil crusts (BSCs) cover extensive portions of the earth’s deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations.


Molecular & Cellular Proteomics | 2008

Characterization of the Human Skeletal Muscle Proteome by One-dimensional Gel Electrophoresis and HPLC-ESI-MS/MS

Kurt Højlund; Zhengping Yi; Hyonson Hwang; Benjamin P. Bowen; Natalie Lefort; Charles R. Flynn; Paul Langlais; Susan T. Weintraub; Lawrence J. Mandarino

Changes in protein abundance in skeletal muscle are central to a large number of metabolic and other disorders, including, and perhaps most commonly, insulin resistance. Proteomics analysis of human muscle is an important approach for gaining insight into the biochemical basis for normal and pathophysiological conditions. However, to date, the number of proteins identified by this approach has been limited, with 107 different proteins being the maximum reported so far. Using a combination of one-dimensional gel electrophoresis and high performance liquid chromatography electrospray ionization tandem mass spectrometry, we identified 954 different proteins in human vastus lateralis muscle obtained from three healthy, nonobese subjects. In addition to a large number of isoforms of contractile proteins, we detected all proteins involved in the major pathways of glucose and lipid metabolism in skeletal muscle. Mitochondrial proteins accounted for 22% of all proteins identified, including 55 subunits of the respiratory complexes I-V. Moreover, a number of enzymes involved in endocrine and metabolic signaling pathways as well as calcium homeostasis were identified. These results provide the most comprehensive characterization of the human skeletal muscle proteome to date. These data hold promise for future global assessment of quantitative changes in the muscle proteome of patients affected by disorders involving skeletal muscle.


Diabetes | 2011

Reduction in Reactive Oxygen Species Production by Mitochondria From Elderly Subjects With Normal and Impaired Glucose Tolerance

Sangeeta Ghosh; Raweewan Lertwattanarak; Natalie Lefort; Marjorie Molina-Carrion; Joaquin Joya-Galeana; Benjamin P. Bowen; Jose de Jesus Garduno-Garcia; Muhammad A. Abdul-Ghani; Arlan Richardson; Ralph A. DeFronzo; Lawrence J. Mandarino; Holly Van Remmen; Nicolas Musi

OBJECTIVE Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. RESEARCH DESIGN AND METHODS Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. RESULTS ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. CONCLUSIONS Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria.


Mbio | 2015

Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii

Sylvie Miquel; Marion Leclerc; Rebeca Martín; Florian Chain; Marion Lenoir; Sébastien Raguideau; Sylvie Hudault; Chantal Bridonneau; Trent R. Northen; Benjamin P. Bowen; Luis G. Bermúdez-Humarán; Harry Sokol; Muriel Thomas; Philippe Langella

ABSTRACT Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood. IMPORTANCE Inflammatory bowel diseases (IBD) are characterized by low proportions of F. prausnitzii in the gut microbiome. This commensal bacterium exhibits anti-inflammatory effects through still unknown mechanisms. Stable monoassociated rodents are actually not a reproducible model to decipher F. prausnitzii protective effects. We propose a new gnotobiotic rodent model providing mechanistic clues. In this model, F. prausnitzii exhibits protective effects against an acute colitis and a protective metabolic profile is linked to its presence along the digestive tract. We identified a molecule, salicylic acid, directly involved in the protective effect of F. prausnitzii. Targeting its metabolic pathways could be an attractive therapeutic strategy in IBD. Inflammatory bowel diseases (IBD) are characterized by low proportions of F. prausnitzii in the gut microbiome. This commensal bacterium exhibits anti-inflammatory effects through still unknown mechanisms. Stable monoassociated rodents are actually not a reproducible model to decipher F. prausnitzii protective effects. We propose a new gnotobiotic rodent model providing mechanistic clues. In this model, F. prausnitzii exhibits protective effects against an acute colitis and a protective metabolic profile is linked to its presence along the digestive tract. We identified a molecule, salicylic acid, directly involved in the protective effect of F. prausnitzii. Targeting its metabolic pathways could be an attractive therapeutic strategy in IBD.


Analytical Chemistry | 1999

Microfabricated recessed disk microelectrodes: characterization in static and convective solutions

Ingrid Fritsch; Charles S. Henry; Benjamin P. Bowen; Walter R. Vandaveer; Nicole Bratcher

Construction and characterization of microfabricated recessed microdisk electrodes (RMDs) of 14- and 55-μm diameters and 4-μm depth are reported. For evaluation of electrode function, both faradaic current in Ru(NH(3))(6)(3+)/KNO(3) solution and charging current in KNO(3) solution were measured with cyclic voltammetry. The experimental maximum current was measured and compared to calculated values, assuming radial and linear diffusion. A model for diffusion to a RMD best matches the behavior of the 14-μm RMD, which has a larger depth-to-diameter ratio than the 55-μm RMD. At fast scan rates (204 V s(-)(1)), where linear diffusion should dominate, there are large deviations from the linear diffusion model. Uncompensated resistance and overcorrection for background current contribute to this deviation. The dependence of capacitance on scan rate of the RMDs was found to be similar to that of a macroelectrode, indicating good adhesion between the insulator and the electrode. Chronoamperometry of Ru(NH(3))(6)(3+) in KNO(3) in both static and stirred solutions was performed using the RMDs and the current is compared to those from a 10-μm-diameter planar microdisk electrode (PMD). The signal-to-noise ratio of the 14-μm RMDs compared to the PMD is on average 4 times greater for stirred solutions. The 55-μm RMD exhibited no protection to convection of the stirred solution.


Journal of Proteome Research | 2009

In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS.

Kurt Højlund; Benjamin P. Bowen; Hyonson Hwang; Charles R. Flynn; Lohith Madireddy; Thangiah Geetha; Paul Langlais; Christian Meyer; Lawrence J. Mandarino; Zhengping Yi

Protein phosphorylation plays an essential role in signal transduction pathways that regulate substrate and energy metabolism, contractile function, and muscle mass in human skeletal muscle. Abnormal phosphorylation of signaling enzymes has been identified in insulin-resistant muscle using phosphoepitope-specific antibodies, but its role in other skeletal muscle disorders remains largely unknown. This may be in part due to insufficient knowledge of relevant targets. Here, we therefore present the first large-scale in vivo phosphoproteomic study of human skeletal muscle from 3 lean, healthy volunteers. Trypsin digestion of 3-5 mg human skeletal muscle protein was followed by phosphopeptide enrichment using SCX and TiO(2). The resulting phosphopeptides were analyzed by HPLC-ESI-MS/MS. Using this unbiased approach, we identified 306 distinct in vivo phosphorylation sites in 127 proteins, including 240 phosphoserines, 53 phosphothreonines, and 13 phosphotyrosines in at least 2 out of 3 subjects. In addition, 61 ambiguous phosphorylation sites were identified in at least 2 out of 3 subjects. The majority of phosphoproteins detected are involved in sarcomeric function, excitation-contraction coupling (the Ca(2+)-cycle), glycolysis, and glycogen metabolism. Of particular interest, we identified multiple novel phosphorylation sites on several sarcomeric Z-disk proteins known to be involved in signaling and muscle disorders. These results provide numerous new targets for the investigation of human skeletal muscle phosphoproteins in health and disease and demonstrate feasibility of phosphoproteomics research of human skeletal muscle in vivo.

Collaboration


Dive into the Benjamin P. Bowen's collaboration.

Top Co-Authors

Avatar

Trent R. Northen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Katherine Louie

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Baran

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles R. Flynn

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rebecca Lau

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus de Raad

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge