Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peggie Cheung is active.

Publication


Featured researches published by Peggie Cheung.


Nature | 2008

SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin

Eriko Michishita; Ronald A. McCord; Elisabeth Berber; Mitomu Kioi; Hesed Padilla-Nash; Mara Damian; Peggie Cheung; Rika Kusumoto; Tiara L.A. Kawahara; J. Carl Barrett; Howard Y. Chang; Vilhelm A. Bohr; Thomas Ried; Or Gozani; Katrin F. Chua

The Sir2 deacetylase regulates chromatin silencing and lifespan in Saccharomyces cerevisiae. In mice, deficiency for the Sir2 family member SIRT6 leads to a shortened lifespan and a premature ageing-like phenotype. However, the molecular mechanisms of SIRT6 function are unclear. SIRT6 is a chromatin-associated protein, but no enzymatic activity of SIRT6 at chromatin has yet been detected, and the identity of physiological SIRT6 substrates is unknown. Here we show that the human SIRT6 protein is an NAD+-dependent, histone H3 lysine 9 (H3K9) deacetylase that modulates telomeric chromatin. SIRT6 associates specifically with telomeres, and SIRT6 depletion leads to telomere dysfunction with end-to-end chromosomal fusions and premature cellular senescence. Moreover, SIRT6-depleted cells exhibit abnormal telomere structures that resemble defects observed in Werner syndrome, a premature ageing disorder. At telomeric chromatin, SIRT6 deacetylates H3K9 and is required for the stable association of WRN, the factor that is mutated in Werner syndrome. We propose that SIRT6 contributes to the propagation of a specialized chromatin state at mammalian telomeres, which in turn is required for proper telomere metabolism and function. Our findings constitute the first identification of a physiological enzymatic activity of SIRT6, and link chromatin regulation by SIRT6 to telomere maintenance and a human premature ageing syndrome.


Nature | 2009

Telomerase modulates Wnt signalling by association with target gene chromatin

Jae Il Park; Andrew S. Venteicher; Ji Yeon Hong; Jinkuk Choi; Sohee Jun; Marina Shkreli; Woody Chang; Zhaojing Meng; Peggie Cheung; Hong Ji; Margaret McLaughlin; Timothy D. Veenstra; Roel Nusse; Pierre D. McCrea; Steven E. Artandi

Stem cells are controlled, in part, by genetic pathways frequently dysregulated during human tumorigenesis. Either stimulation of Wnt/β-catenin signalling or overexpression of telomerase is sufficient to activate quiescent epidermal stem cells in vivo, although the mechanisms by which telomerase exerts these effects are not understood. Here we show that telomerase directly modulates Wnt/β-catenin signalling by serving as a cofactor in a β-catenin transcriptional complex. The telomerase protein component TERT (telomerase reverse transcriptase) interacts with BRG1 (also called SMARCA4), a SWI/SNF-related chromatin remodelling protein, and activates Wnt-dependent reporters in cultured cells and in vivo. TERT serves an essential role in formation of the anterior–posterior axis in Xenopus laevis embryos, and this defect in Wnt signalling manifests as homeotic transformations in the vertebrae of Tert-/- mice. Chromatin immunoprecipitation of the endogenous TERT protein from mouse gastrointestinal tract shows that TERT physically occupies gene promoters of Wnt-dependent genes. These data reveal an unanticipated role for telomerase as a transcriptional modulator of the Wnt/β-catenin signalling pathway.


Nature | 2007

RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination

Adam G. W. Matthews; Alex J. Kuo; Santiago Ramón-Maiques; Sunmi Han; Karen S. Champagne; Dmitri Ivanov; Mercedes Gallardo; Dylan Carney; Peggie Cheung; David N. Ciccone; Kay L. Walter; Paul J. Utz; Yang Shi; Tatiana G. Kutateladze; Wei Yang; Or Gozani; Marjorie A. Oettinger

Nuclear processes such as transcription, DNA replication and recombination are dynamically regulated by chromatin structure. Eukaryotic transcription is known to be regulated by chromatin-associated proteins containing conserved protein domains that specifically recognize distinct covalent post-translational modifications on histones. However, it has been unclear whether similar mechanisms are involved in mammalian DNA recombination. Here we show that RAG2—an essential component of the RAG1/2 V(D)J recombinase, which mediates antigen-receptor gene assembly—contains a plant homeodomain (PHD) finger that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3). The high-resolution crystal structure of the mouse RAG2 PHD finger bound to H3K4me3 reveals the molecular basis of H3K4me3-recognition by RAG2. Mutations that abrogate RAG2’s recognition of H3K4me3 severely impair V(D)J recombination in vivo. Reducing the level of H3K4me3 similarly leads to a decrease in V(D)J recombination in vivo. Notably, a conserved tryptophan residue (W453) that constitutes a key structural component of the K4me3-binding surface and is essential for RAG2’s recognition of H3K4me3 is mutated in patients with immunodeficiency syndromes. Together, our results identify a new function for histone methylation in mammalian DNA recombination. Furthermore, our results provide the first evidence indicating that disrupting the read-out of histone modifications can cause an inherited human disease.


Nature | 2005

Conditional telomerase induction causes proliferation of hair follicle stem cells

Kavita Y. Sarin; Peggie Cheung; Daniel Gilison; Eunice Lee; Ruth I. Tennen; Estee Wang; Maja K. Artandi; Anthony E. Oro; Steven E. Artandi

TERT, the protein component of telomerase, serves to maintain telomere function through the de novo addition of telomere repeats to chromosome ends, and is reactivated in 90% of human cancers. In normal tissues, TERT is expressed in stem cells and in progenitor cells, but its role in these compartments is not fully understood. Here we show that conditional transgenic induction of TERT in mouse skin epithelium causes a rapid transition from telogen (the resting phase of the hair follicle cycle) to anagen (the active phase), thereby facilitating robust hair growth. TERT overexpression promotes this developmental transition by causing proliferation of quiescent, multipotent stem cells in the hair follicle bulge region. This new function for TERT does not require the telomerase RNA component, which encodes the template for telomere addition, and therefore operates through a mechanism independent of its activity in synthesizing telomere repeats. These data indicate that, in addition to its established role in extending telomeres, TERT can promote proliferation of resting stem cells through a non-canonical pathway.


PLOS Genetics | 2005

TERT Promotes Epithelial Proliferation through Transcriptional Control of a Myc- and Wnt-Related Developmental Program

Jinkuk Choi; Lucinda K. Southworth; Kavita Y. Sarin; Andrew S. Venteicher; Wenxiu Ma; Woody Chang; Peggie Cheung; Sohee Jun; Maja K. Artandi; Naman Shah; Stuart K. Kim; Steven E. Artandi

Telomerase serves a critical role in stem cell function and tissue homeostasis. This role depends on its ability to synthesize telomere repeats in a manner dependent on the reverse transcriptase (RT) function of its protein component telomerase RT (TERT), as well as on a novel pathway whose mechanism is poorly understood. Here, we use a TERT mutant lacking RT function (TERTci) to study the mechanism of TERT action in mammalian skin, an ideal tissue for studying progenitor cell biology. We show that TERTci retains the full activities of wild-type TERT in enhancing keratinocyte proliferation in skin and in activating resting hair follicle stem cells, which triggers initiation of a new hair follicle growth phase and promotes hair synthesis. To understand the nature of this RT-independent function for TERT, we studied the genome-wide transcriptional response to acute changes in TERT levels in mouse skin. We find that TERT facilitates activation of progenitor cells in the skin and hair follicle by triggering a rapid change in gene expression that significantly overlaps the program controlling natural hair follicle cycling in wild-type mice. Statistical comparisons to other microarray gene sets using pattern-matching algorithms revealed that the TERT transcriptional response strongly resembles those mediated by Myc and Wnt, two proteins intimately associated with stem cell function and cancer. These data show that TERT controls tissue progenitor cells via transcriptional regulation of a developmental program converging on the Myc and Wnt pathways.


Nature | 2012

The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome

Alex J. Kuo; Jikui Song; Peggie Cheung; Satoko Ishibe-Murakami; Sayumi Yamazoe; James K. Chen; Dinshaw J. Patel; Or Gozani

The recognition of distinctly modified histones by specialized ‘effector’ proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1—a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing—contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier–Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1–H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.


Molecular Cell | 2011

NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming

Alex J. Kuo; Peggie Cheung; Kaifu Chen; Barry M. Zee; Mitomu Kioi; Josh Lauring; Yuanxin Xi; Ben Ho Park; Xiaobing Shi; Benjamin A. Garcia; Wei Li; Or Gozani

The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here, we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together, our findings establish H3K36me2 as the primary product generated by NSD2 and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming.


Journal of Biological Chemistry | 2009

The Target of the NSD Family of Histone Lysine Methyltransferases Depends on the Nature of the Substrate

Yan Li; Patrick Trojer; Chong-Feng Xu; Peggie Cheung; Alex J. Kuo; William J. Drury; Qi Qiao; Thomas A. Neubert; Rui-Ming Xu; Or Gozani; Danny Reinberg

The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.


Nature Immunology | 2011

Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling

Dan Levy; Alex J. Kuo; Yanqi Chang; Uwe Schaefer; Christopher Kitson; Peggie Cheung; Alexsandra Espejo; Barry M. Zee; Chih Long Liu; Stephanie Tangsombatvisit; Ruth I. Tennen; Andrew Y Kuo; Song Tanjing; Regina K. Cheung; Katrin F. Chua; Paul J. Utz; Xiaobing Shi; Rab K. Prinjha; Kevin Lee; Benjamin A. Garcia; Mark T. Bedford; Alexander Tarakhovsky; Xiaodong Cheng; Or Gozani

Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-κB subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-κB-activation–linked phosphorylation of RelA at Ser311 by protein kinase C-ζ (PKC-ζ) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.Protein lysine methylation signaling is implicated in diverse biological and disease processes. Yet the catalytic activity and substrate specificity are unknown for many human protein lysine methyltransferases (PKMTs). We screened over forty candidate PKMTs and identified SETD6 as a methyltransferase that monomethylates chromatin-associated NF-κB RelA at lysine 310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of GLP, which under basal conditions, promoted a repressed chromatin state at RelA target genes through GLP-mediated H3K9 methylation. NF-κB activation-linked phosphorylation of RelA by PKCζ at serine 311 blocked GLP binding to RelAK310me1 and relieved target gene repression. Our findings establish a new mechanism by which chromatin signaling regulates inflammation programs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity

Andrew S. Koh; Alex J. Kuo; Sang Youn Park; Peggie Cheung; Jakub Abramson; Dennis J. Bua; Dylan Carney; Steven E. Shoelson; Or Gozani; Robert E. Kingston; Christophe Benoist; Diane Mathis

Aire induces ectopic expression of peripheral tissue antigens (PTAs) in thymic medullary epithelial cells, which promotes immunological tolerance. Beginning with a broad screen of histone peptides, we demonstrate that the mechanism by which this single factor controls the transcription of thousands of genes involves recognition of the amino-terminal tail of histone H3, but not of other histones, by one of Aires plant homeodomain (PHD) fingers. Certain posttranslational modifications of H3 tails, notably dimethylation or trimethylation at H3K4, abrogated binding by Aire, whereas others were tolerated. Similar PHD finger–H3 tail-binding properties were recently reported for BRAF-histone deacetylase complex 80 and DNA methyltransferase 3L; sequence alignment, molecular modeling, and biochemical analyses showed these factors and Aire to have structure–function relationships in common. In addition, certain PHD1 mutations underlying the polyendocrine disorder autoimmune polyendocrinopathy–candidiases–ectodermaldystrophy compromised Aire recognition of H3. In vitro binding assays demonstrated direct physical interaction between Aire and nucleosomes, which was in part buttressed by its affinity to DNA. In vivo Aire interactions with chromosomal regions depleted of H3K4me3 were dependent on its H3 tail-binding activity, and this binding was necessary but not sufficient for the up-regulation of genes encoding PTAs. Thus, Aires activity as a histone-binding module mediates the thymic display of PTAs that promotes self-tolerance and prevents organ-specific autoimmunity.

Collaboration


Dive into the Peggie Cheung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexsandra Espejo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge