Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexsandra Espejo is active.

Publication


Featured researches published by Alexsandra Espejo.


Nature | 2007

p53 is regulated by the lysine demethylase LSD1

Jing Huang; Roopsha Sengupta; Alexsandra Espejo; Min Gyu Lee; Jean Dorsey; Mario Richter; Susanne Opravil; Ramin Shiekhattar; Mark T. Bedford; Thomas Jenuwein; Shelley L. Berger

p53, the tumour suppressor and transcriptional activator, is regulated by numerous post-translational modifications, including lysine methylation. Histone lysine methylation has recently been shown to be reversible; however, it is not known whether non-histone proteins are substrates for demethylation. Here we show that, in human cells, the histone lysine-specific demethylase LSD1 (refs 3, 4) interacts with p53 to repress p53-mediated transcriptional activation and to inhibit the role of p53 in promoting apoptosis. We find that, in vitro, LSD1 removes both monomethylation (K370me1) and dimethylation (K370me2) at K370, a previously identified Smyd2-dependent monomethylation site. However, in vivo, LSD1 shows a strong preference to reverse K370me2, which is performed by a distinct, but unknown, methyltransferase. Our results indicate that K370me2 has a different role in regulating p53 from that of K370me1: K370me1 represses p53 function, whereas K370me2 promotes association with the coactivator 53BP1 (p53-binding protein 1) through tandem Tudor domains in 53BP1. Further, LSD1 represses p53 function through the inhibition of interaction of p53 with 53BP1. These observations show that p53 is dynamically regulated by lysine methylation and demethylation and that the methylation status at a single lysine residue confers distinct regulatory output. Lysine methylation therefore provides similar regulatory complexity for non-histone proteins and for histones.


EMBO Reports | 2006

Tudor, MBT and chromo domains gauge the degree of lysine methylation

Jeesun Kim; Jeremy Daniel; Alexsandra Espejo; Aimee Lake; Murli Krishna; Li Xia; Yi Zhang; Mark T. Bedford

The post‐translational modification of histones regulates many cellular processes, including transcription, replication and DNA repair. A large number of combinations of post‐translational modifications are possible. This cipher is referred to as the histone code. Many of the enzymes that lay down this code have been identified. However, so far, few code‐reading proteins have been identified. Here, we describe a protein‐array approach for identifying methyl‐specific interacting proteins. We found that not only chromo domains but also tudor and MBT domains bind to methylated peptides from the amino‐terminal tails of histones H3 and H4. Binding specificity observed on the protein‐domain microarray was corroborated using peptide pull‐downs, surface plasma resonance and far western blotting. Thus, our studies expose tudor and MBT domains as new classes of methyl‐lysine‐binding protein modules, and also demonstrates that protein‐domain microarrays are powerful tools for the identification of new domain types that recognize histone modifications.


Genes & Development | 2008

A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse

Gunnar Schotta; Roopsha Sengupta; Stefan Kubicek; Stephen Malin; Monika Kauer; Elsa Callen; Arkady Celeste; Michaela Pagani; Susanne Opravil; Inti A. De La Rosa-Velazquez; Alexsandra Espejo; Mark T. Bedford; André Nussenzweig; Meinrad Busslinger; Thomas Jenuwein

H4K20 methylation is a broad chromatin modification that has been linked with diverse epigenetic functions. Several enzymes target H4K20 methylation, consistent with distinct mono-, di-, and trimethylation states controlling different biological outputs. To analyze the roles of H4K20 methylation states, we generated conditional null alleles for the two Suv4-20h histone methyltransferase (HMTase) genes in the mouse. Suv4-20h-double-null (dn) mice are perinatally lethal and have lost nearly all H4K20me3 and H4K20me2 states. The genome-wide transition to an H4K20me1 state results in increased sensitivity to damaging stress, since Suv4-20h-dn chromatin is less efficient for DNA double-strand break (DSB) repair and prone to chromosomal aberrations. Notably, Suv4-20h-dn B cells are defective in immunoglobulin class-switch recombination, and Suv4-20h-dn deficiency impairs the stem cell pool of lymphoid progenitors. Thus, conversion to an H4K20me1 state results in compromised chromatin that is insufficient to protect genome integrity and to process a DNA-rearranging differentiation program in the mouse.


Nature Immunology | 2011

Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling

Dan Levy; Alex J. Kuo; Yanqi Chang; Uwe Schaefer; Christopher Kitson; Peggie Cheung; Alexsandra Espejo; Barry M. Zee; Chih Long Liu; Stephanie Tangsombatvisit; Ruth I. Tennen; Andrew Y Kuo; Song Tanjing; Regina K. Cheung; Katrin F. Chua; Paul J. Utz; Xiaobing Shi; Rab K. Prinjha; Kevin Lee; Benjamin A. Garcia; Mark T. Bedford; Alexander Tarakhovsky; Xiaodong Cheng; Or Gozani

Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-κB subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-κB-activation–linked phosphorylation of RelA at Ser311 by protein kinase C-ζ (PKC-ζ) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.Protein lysine methylation signaling is implicated in diverse biological and disease processes. Yet the catalytic activity and substrate specificity are unknown for many human protein lysine methyltransferases (PKMTs). We screened over forty candidate PKMTs and identified SETD6 as a methyltransferase that monomethylates chromatin-associated NF-κB RelA at lysine 310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of GLP, which under basal conditions, promoted a repressed chromatin state at RelA target genes through GLP-mediated H3K9 methylation. NF-κB activation-linked phosphorylation of RelA by PKCζ at serine 311 blocked GLP binding to RelAK310me1 and relieved target gene repression. Our findings establish a new mechanism by which chromatin signaling regulates inflammation programs.


Journal of Biological Chemistry | 2008

Arginine Methylation of the Histone H3 Tail Impedes Effector Binding

Aimee N. Iberg; Alexsandra Espejo; Donghang Cheng; Daehoon Kim; Jonathan Michaud-Levesque; Stéphane Richard; Mark T. Bedford

Histone tail post-translational modification results in changes in cellular processes, either by generating or blocking docking sites for histone code readers or by altering the higher order chromatin structure. H3K4me3 is known to mark the promoter regions of active transcription. Proteins bind H3K4 in a methyl-dependent manner and aid in the recruitment of histone-remodeling enzymes and transcriptional cofactors. The H3K4me3 binders harbor methyl-specific chromatin binding domains, including plant homeodomain, Chromo, and tudor domains. Structural analysis of the plant homeodomains present in effector proteins, as well as the WD40 repeats of WDR5, reveals critical contacts between residues in these domains and H3R2. The intimate contact between H3R2 and these domain types leads to the hypothesis that methylation of this arginine residue antagonizes the binding of effector proteins to the N-terminal tail of H3. Here we show that H3 tail binding effector proteins are indeed sensitive to H3R2 methylation and that PRMT6, not CARM1/PRMT4, is the primary methyltransferase acting on this site. We have tested the expression of a select group of H3K4 effector-regulated genes in PRMT6 knockdown cells and found that their levels are altered. Thus, PRMT6 methylates H3R2 and is a negative regulator of N-terminal H3 tail binding.


PLOS ONE | 2009

Epigenome Microarray Platform for Proteome-Wide Dissection of Chromatin-Signaling Networks

Dennis J. Bua; Alex J. Kuo; Peggie Cheung; Chih Long Liu; Valentina Migliori; Alexsandra Espejo; Fabio Casadio; Christian Bassi; Bruno Amati; Mark T. Bedford; Ernesto Guccione; Or Gozani

Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin.


Nature Communications | 2011

MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a

Yanqi Chang; Lidong Sun; Kenji Kokura; John R. Horton; Mikiko Fukuda; Alexsandra Espejo; Victoria Izumi; John M. Koomen; Mark T. Bedford; Xing Zhang; Yoichi Shinkai; Jia Fang; Xiaodong Cheng

DNA CpG methylation and histone H3 lysine 9 (H3K9) methylation are two major repressive epigenetic modifications, and these methylations are positively correlated with one another in chromatin. Here we show that G9a or G9a-like protein (GLP) dimethylate the amino-terminal lysine 44 (K44) of mouse Dnmt3a (equivalent to K47 of human DNMT3A) in vitro and in cells overexpressing G9a or GLP. The chromodomain of MPP8 recognizes the dimethylated Dnmt3aK44me2. MPP8 also interacts with self-methylated GLP in a methylation-dependent manner. The MPP8 chromodomain forms a dimer in solution and in crystals, suggesting that a dimeric MPP8 molecule could bridge the methylated Dnmt3a and GLP, resulting in a silencing complex of Dnmt3a-MPP8-GLP/G9a on chromatin templates. Together, these findings provide a molecular explanation, at least in part, for the co-occurrence of DNA methylation and H3K9 methylation in chromatin.


Nucleic Acids Research | 2010

A homogeneous method for investigation of methylation-dependent protein–protein interactions in epigenetics

Amy Quinn; Mark T. Bedford; Alexsandra Espejo; Christopher P. Austin; U. Oppermann; Anton Simeonov

Methylation of lysine residues on the tails of histone proteins is a major determinant of the transcription state of associated DNA coding regions. The interplay among methylation states and other histone modifications to direct transcriptional outcome is referred to as the histone code. In addition to histone methyltransferases and demethylases which function to modify the methylation state of lysine sidechains, other proteins recognize specific histone methylation marks essentially serving as code readers. While these interactions are highly specific with respect to site and methylation state of particular lysine residues, they are generally weak and therefore difficult to monitor by traditional assay techniques. Herein, we present the design and implementation of a homogeneous, miniaturizable, and sensitive assay for histone methylation-dependent interactions. We use AlphaScreen, a chemiluminescence-based technique, to monitor the interactions of chromodomains (MPP8, HP1β and CHD1), tudor domains (JMJD2A) and plant homeodomains (RAG2) with their cognate trimethyllysine histone partners. The utility of the method was demonstrated by profiling the binding specificities of chromo- and tudor domains toward several histone marks. The simplicity of design and the sensitive and robust nature of this assay should make it applicable to a range of epigenetic studies, including the search for novel inhibitors of methylation-dependent interactions.


Cancer Research | 2010

Mouse Models for the p53 R72P Polymorphism Mimic Human Phenotypes

Feng Zhu; Martijn E.T. Dollé; Thomas R. Berton; Raoul V. Kuiper; Carrie Capps; Alexsandra Espejo; Mark J. McArthur; Mark T. Bedford; Harry van Steeg; Annemieke de Vries; David G. Johnson

The p53 tumor suppressor gene contains a common single nucleotide polymorphism (SNP) that results in either an arginine or proline at position 72 of the p53 protein. This polymorphism affects the apoptotic activity of p53 but the mechanistic basis and physiologic relevance of this phenotypic difference remain unclear. Here, we describe the development of mouse models for the p53 R72P SNP using two different approaches. In both sets of models, the human or humanized p53 proteins are functional as evidenced by the transcriptional induction of p53 target genes in response to DNA damage and the suppression of early lymphomagenesis. Consistent with in vitro studies, mice expressing the 72R variant protein (p53R) have a greater apoptotic response to several stimuli compared with mice expressing the p53P variant. Molecular studies suggest that both transcriptional and nontranscriptional mechanisms may contribute to the differential abilities of the p53 variants to induce apoptosis. Despite a difference in the acute response to UV radiation, no difference in the tumorigenic response to chronic UV exposure was observed between the polymorphic mouse models. These findings suggest that under at least some conditions, the modulation of apoptosis by the R72P polymorphism does not affect the process of carcinogenesis.


PLOS ONE | 2012

Interaction of Proliferation Cell Nuclear Antigen (PCNA) with c-Abl in Cell Proliferation and Response to DNA Damages in Breast Cancer

Huajun Zhao; Po Chun Ho; Yuan-Hung Lo; Alexsandra Espejo; Mark T. Bedford; Mien Chie Hung; Shao Chun Wang

Cell proliferation in primary and metastatic tumors is a fundamental characteristic of advanced breast cancer. Further understanding of the mechanism underlying enhanced cell growth will be important in identifying novel prognostic markers and therapeutic targets. Here we demonstrated that tyrosine phosphorylation of the proliferating cell nuclear antigen (PCNA) is a critical event in growth regulation of breast cancer cells. We found that phosphorylation of PCNA at tyrosine 211 (Y211) enhanced its association with the non-receptor tyrosine kinase c-Abl. We further demonstrated that c-Abl facilitates chromatin association of PCNA and is required for nuclear foci formation of PCNA in cells stressed by DNA damage as well as in unperturbed cells. Targeting Y211 phosphorylation of PCNA with a cell-permeable peptide inhibited the phosphorylation and reduced the PCNA-Abl interaction. These results show that PCNA signal transduction has an important impact on the growth regulation of breast cancer cells.

Collaboration


Dive into the Alexsandra Espejo's collaboration.

Top Co-Authors

Avatar

Mark T. Bedford

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaodong Cheng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos J. Perez

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge