Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pei Suen Tsou is active.

Publication


Featured researches published by Pei Suen Tsou.


Annals of the Rheumatic Diseases | 2015

Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies

Nezam Altorok; Pei Suen Tsou; Patrick Coit; Dinesh Khanna; Amr H. Sawalha

Background The aetiology of systemic sclerosis (SSc) is not clear, but there is an emerging evidence of gene-specific epigenetic dysregulation in the pathogenesis of SSc. Methods We performed a genome-wide DNA methylation study in dermal fibroblasts in six diffuse cutaneous SSc (dSSc) patients, six limited cutaneous SSc (lSSc) patients compared with 12 age-matched, sex-matched and ethnicity-matched healthy controls. Cytosine methylation was quantified in more than 485 000 methylation sites across the genome. Differentially methylated CpG sites between patients and controls with a fold difference ≥1.2 were identified. Quantitative real-time RT-PCR was performed to assess correlation between DNA methylation changes and gene expression levels. Results We identified 2710 and 1021 differentially methylated CpG sites in dSSc and lSSc, respectively. Of the differentially methylated sites, 61% in dSSc and 90% in lSSc were hypomethylated. There were only 203 CpG sites differentially methylated in both dSSc and lSSc, representing 118 hypomethylated and 6 hypermethylated genes. Common hypomethylated genes include ITGA9, encoding an α integrin. Other relevant genes such as ADAM12, COL23A1, COL4A2 and MYO1E, and transcription factors genes RUNX1, RUNX2 and RUNX3 were also hypomethylated in both dSSc and lSSc. Pathway analysis of differentially methylated genes in both dSSc and lSSc revealed enrichment of genes involved in extracellular matrix–receptor interaction and focal adhesion. We demonstrate significant correlation between DNA methylation status and gene expression in the majority of genes evaluated. Conclusions Our data highlight common and subset-specific aberrancies in dSSc and lSSc fibroblasts at the epigenomic levels and identify novel candidate genes in SSc.


Arthritis Research & Therapy | 2011

Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis

Pei Suen Tsou; Yong Hou; Eshwar Thirunavukkarasu; G. Kenneth Haines; Ann Impens; Kristine Phillips; Bashar Kahaleh; James R. Seibold; Alisa E. Koch

IntroductionSystemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum.MethodsImmunohistology and enzyme-linked immunosorbent assays (ELISAs) were used to determine chemokine and chemokine receptor expression in the skin and serum, respectively, of SSc and normal patients. Endothelial cells (ECs) were isolated from SSc skin biopsies and chemokine and chemokine receptor expression was determined by quantitative PCR and immunofluorescence staining.ResultsAntiangiogenic IP-10/CXCL10 and MIG/CXCL9 were elevated in SSc serum and highly expressed in SSc skin. However, CXCR3, the receptor for these chemokines, was decreased on ECs in SSc vs. normal skin. CXCL16 was elevated in SSc serum and increased in SSc patients with early disease, pulmonary arterial hypertension, and those that died during the 36 months of the study. In addition, its receptor CXCR6 was overexpressed on ECs in SSc skin. At the mRNA and protein levels, CXCR3 was decreased while CXCR6 was increased on SSc ECs vs. human microvascular endothelial cells (HMVECs).ConclusionsThese results show that while the expression of MIG/CXCL9 and IP-10/CXCL10 are elevated in SSc serum, the expression of CXCR3 is downregulated on SSc dermal ECs. In contrast, CXCL16 and CXCR6 are elevated in SSc serum and on SSc dermal ECs, respectively. In all, these findings suggest angiogenic chemokine receptor expression is likely regulated in an effort to promote angiogenesis in SSc skin.


Journal of Pharmacology and Experimental Therapeutics | 2014

Targeting the Myofibroblast Genetic Switch: Inhibitors of Myocardin-Related Transcription Factor/Serum Response Factor–Regulated Gene Transcription Prevent Fibrosis in a Murine Model of Skin Injury

Andrew J. Haak; Pei Suen Tsou; Mohammad A. Amin; Jeffrey H. Ruth; Phillip L. Campbell; David A. Fox; Dinesh Khanna; Scott D. Larsen; Richard R. Neubig

Systemic sclerosis (SSc), or scleroderma, similar to many fibrotic disorders, lacks effective therapies. Current trials focus on anti-inflammatory drugs or targeted approaches aimed at one of the many receptor mechanisms initiating fibrosis. In light of evidence that a myocardin-related transcription factor (MRTF)–and serum response factor (SRF)–regulated gene transcriptional program induced by Rho GTPases is essential for myofibroblast activation, we explored the hypothesis that inhibitors of this pathway may represent novel antifibrotics. MRTF/SRF-regulated genes show spontaneously increased expression in primary dermal fibroblasts from patients with diffuse cutaneous SSc. A novel small-molecule inhibitor of MRTF/SRF-regulated transcription (CCG-203971) inhibits expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen 1 (COL1A2) in both SSc fibroblasts and in lysophosphatidic acid (LPA)–and transforming growth factor β (TGFβ)–stimulated fibroblasts. In vivo treatment with CCG-203971 also prevented bleomycin-induced skin thickening and collagen deposition. Thus, targeting the MRTF/SRF gene transcription pathway could provide an efficacious new approach to therapy for SSc and other fibrotic disorders.


Journal of Immunology | 2010

Junctional Adhesion Molecule-C Is a Soluble Mediator of Angiogenesis

Mohammad A. Amin; Nanditha Teegala; Matthew K. Shaheen; Pei Suen Tsou; Jeffrey H. Ruth; Charles Lesch; Beat A. Imhof; Alisa E. Koch

Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed by endothelial cells (ECs) that plays a role in tight junction formation, leukocyte adhesion, and transendothelial migration. In the current study, we investigated whether JAM-C is found in soluble form and whether soluble JAM-C (sJAM-C) mediates angiogenesis. We found that JAM-C is present in soluble form in normal serum and elevated in rheumatoid arthritis (RA) serum. The concentration of sJAM-C is also elevated locally in RA synovial fluid compared with RA serum or osteoarthritis synovial fluid. sJAM-C was also present in the culture supernatant of human microvascular ECs (HMVECs) and immortalized human dermal microvascular ECs, and its concentration was increased following cytokine stimulation. In addition, sJAM-C cleavage from the cell surface was mediated in part by a disintegrin and metalloproteinases 10 and 17. In functional assays, sJAM-C was both chemotactic and chemokinetic for HMVECs and induced HMVEC tube formation on Matrigel in vitro. Neutralizing anti–JAM-C Abs inhibited RA synovial fluid–induced HMVEC chemotaxis and sJAM-C–induced HMVEC tube formation on Matrigel. sJAM-C also induced angiogenesis in vivo in the Matrigel plug and sponge granuloma models. Moreover, sJAM-C–mediated HMVEC chemotaxis was dependent on Src, p38, and PI3K. Our results show that JAM-C exists in soluble form and suggest that modulation of sJAM-C may provide a novel route for controlling pathological angiogenesis.


American Journal of Physiology-cell Physiology | 2014

Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: Focus on RHO GTPase-regulated gene transcription

Pei Suen Tsou; Andrew J. Haak; Dinesh Khanna; Richard R. Neubig

Tissue fibrosis occurs with excessive extracellular matrix deposition from myofibroblasts, resulting in tissue scarring and inflammation. It is driven by multiple mediators, such as the G protein-coupled receptor ligands lysophosphatidic acid and endothelin, as well as signaling by transforming growth factor-β, connective tissue growth factor, and integrins. Fibrosis contributes to 45% of deaths in the developed world. As current therapeutic options for tissue fibrosis are limited and organ transplantation is the only effective treatment for end-stage disease, there is an imminent need for efficacious antifibrotic therapies. This review discusses the various molecular pathways involved in fibrosis. It highlights the Rho GTPase signaling pathway and its downstream gene transcription output through myocardin-related transcription factor and serum response factor as a convergence point for targeting this complex set of diseases.


Arthritis & Rheumatism | 2012

Effect of Oxidative Stress on Protein Tyrosine Phosphatase-1B in Scleroderma Dermal Fibroblasts

Pei Suen Tsou; Nadine N. Talia; Adam J. Pinney; Ann Kendzicky; Sonsoles Piera-Velazquez; Sergio A. Jimenez; James R. Seibold; Kristine Phillips; Alisa E. Koch

OBJECTIVE Platelet-derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol-sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N-acetylcysteine (NAC), in SSc. METHODS Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. RESULTS Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK-1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine-phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. CONCLUSION This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.


Arthritis Research & Therapy | 2014

Fucosyltransferase 1 mediates angiogenesis, cell adhesion and rheumatoid arthritis synovial tissue fibroblast proliferation

Takeo Isozaki; Jeffrey H. Ruth; Mohammad A. Amin; Phillip L. Campbell; Pei Suen Tsou; Christine M. Ha; G. K. Haines; Gautam Edhayan; Alisa E. Koch

IntroductionWe previously reported that sialyl Lewisy, synthesized by fucosyltransferases, is involved in angiogenesis. Fucosyltransferase 1 (fut1) is an α(1,2)-fucosyltransferase responsible for synthesis of the H blood group and Lewisy antigens. However, the angiogenic involvement of fut 1 in the pathogenesis of rheumatoid arthritis synovial tissue (RA ST) has not been clearly defined.MethodsAssay of α(1,2)-linked fucosylated proteins in RA was performed by enzyme-linked lectin assay. Fut1 expression was determined in RA ST samples by immunohistological staining. We performed angiogenic Matrigel assays using a co-culture system of human dermal microvascular endothelial cells (HMVECs) and fut1 small interfering RNA (siRNA) transfected RA synovial fibroblasts. To determine if fut1 played a role in leukocyte retention and cell proliferation in the RA synovium, myeloid THP-1 cell adhesion assays and fut1 siRNA transfected RA synovial fibroblast proliferation assays were performed.ResultsTotal α(1,2)-linked fucosylated proteins in RA ST were significantly higher compared to normal (NL) ST. Fut1 expression on RA ST lining cells positively correlated with ST inflammation. HMVECs from a co-culture system with fut1 siRNA transfected RA synovial fibroblasts exhibited decreased endothelial cell tube formation compared to control siRNA transfected RA synovial fibroblasts. Fut1 siRNA also inhibited myeloid THP-1 adhesion to RA synovial fibroblasts and RA synovial fibroblast proliferation.ConclusionsThese data show that α(1,2)-linked fucosylated proteins are upregulated in RA ST compared to NL ST. We also show that fut1 in RA synovial fibroblasts is important in angiogenesis, leukocyte-synovial fibroblast adhesion, and synovial fibroblast proliferation, all key processes in the pathogenesis of RA.


Arthritis & Rheumatism | 2016

Histone Deacetylase 5 Is Overexpressed in Scleroderma Endothelial Cells and Impairs Angiogenesis via Repression of Proangiogenic Factors

Pei Suen Tsou; Jonathan D. Wren; M. Asif Amin; Elena Schiopu; David A. Fox; Dinesh Khanna; Amr H. Sawalha

Vascular dysfunction represents a disease‐initiating event in systemic sclerosis (SSc; scleroderma). Results of recent studies suggest that epigenetic dysregulation impairs normal angiogenesis and can result in abnormal patterns of blood vessel growth. Histone deacetylases (HDACs) control endothelial cell (EC) proliferation and regulate EC migration. Specifically, HDAC‐5 appears to be antiangiogenic. This study was undertaken to test whether HDAC‐5 contributes to impaired angiogenesis in SSc by repressing proangiogenic factors in ECs.


Rheumatology | 2016

Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

Pei Suen Tsou; Ray A. Ohara; William A. Stinson; Phillip L. Campbell; M. Asif Amin; Beatrix Balogh; George Zakhem; Paul Renauer; Ann Lozier; Eshwar Arasu; G. Kenneth Haines; Bashar Kahaleh; Elena Schiopu; Dinesh Khanna; Alisa E. Koch

OBJECTIVES Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. METHODS Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. RESULTS Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. CONCLUSION Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc.


Journal of Autoimmunity | 2017

Unfolding the pathogenesis of scleroderma through genomics and epigenomics

Pei Suen Tsou; Amr H. Sawalha

With unknown etiology, scleroderma (SSc) is a multifaceted disease characterized by immune activation, vascular complications, and excessive fibrosis in internal organs. Genetic studies, including candidate gene association studies, genome-wide association studies, and whole-exome sequencing have supported the notion that while genetic susceptibility to SSc appears to be modest, SSc patients are genetically predisposed to this disease. The strongest genetic association for SSc lies within the MHC region, with loci in HLA-DRB1, HLA-DQB1, HLA-DPB1, and HLA-DOA1 being the most replicated. The non-HLA genes associated with SSc are involved in various functions, with the most robust associations including genes for B and T cell activation and innate immunity. Other pathways include genes involved in extracellular matrix deposition, cytokines, and autophagy. Among these genes, IRF5, STAT4, and CD247 were replicated most frequently while SNPs rs35677470 in DNASE1L3, rs5029939 in TNFAIP3, and rs7574685 in STAT4 have the strongest associations with SSc. In addition to genetic predisposition, it became clear that environmental factors and epigenetic influences also contribute to the development of SSc. Epigenetics, which refers to studies that focus on heritable phenotypes resulting from changes in chromatin structure without affecting the DNA sequence, is one of the most rapidly expanding fields in biomedical research. Indeed extensive epigenetic changes have been described in SSc. Alteration in enzymes and mediators involved in DNA methylation and histone modification, as well as dysregulated non-coding RNA levels all contribute to fibrosis, immune dysregulation, and impaired angiogenesis in this disease. Genes that are affected by epigenetic dysregulation include ones involved in autoimmunity, T cell function and regulation, TGFβ pathway, Wnt pathway, extracellular matrix, and transcription factors governing fibrosis and angiogenesis. In this review, we provide a comprehensive overview of the current findings of SSc genetic susceptibility, followed by an extensive description and a systematic review of epigenetic research that has been carried out to date in SSc. We also summarize the therapeutic potential of drugs that affect epigenetic mechanisms, and outline the future prospective of genomics and epigenomics research in SSc.

Collaboration


Dive into the Pei Suen Tsou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge