Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peijian He is active.

Publication


Featured researches published by Peijian He.


Gastroenterology | 2010

Lysophosphatidic Acid Stimulates the Intestinal Brush Border Na+/H+ Exchanger 3 and Fluid Absorption via LPA5 and NHERF2

Songbai Lin; Sunil Yeruva; Peijian He; Anurag Singh; Huanchun Zhang; Mingmin Chen; Georg Lamprecht; Hugo R. de Jonge; Ming Tse; Mark Donowitz; Boris M. Hogema; Jerold Chun; Ursula Seidler; C. Chris Yun

BACKGROUND & AIMS Diarrhea results from reduced net fluid and salt absorption caused by an imbalance in intestinal absorption and secretion. The bulk of sodium and water absorption in the intestine is mediated by Na(+)/H(+) exchanger 3 (NHE3), located in the luminal membrane of enterocytes. We investigated the effect of lysophosphatidic acid (LPA) on Na(+)/H(+) exchanger activity and Na(+)-dependent fluid absorption in the intestine. METHODS We analyzed the effects of LPA on fluid absorption in intestines of wild-type mice and mice deficient in Na(+)/H(+) exchanger regulatory factor 2 (NHERF2; Nherf2(-/-)) or LPA(2) (Lpa(2)(-/-)). Roles of LPA(5) and NHERF2 were determined by analysis of heterologous expression. RESULTS Under basal conditions, LPA increased fluid absorption in an NHE3-dependent manner and restored the net fluid loss in a mouse model of acute diarrhea. Expression of the LPA receptor LPA(5) was necessary for LPA-induced stimulation of NHE3 activity in colonic epithelial cells. Stimulation of NHE3 by the LPA-LPA(5) signaling required coexpression of NHERF2, which interacted with LPA(5). LPA-mediated intestinal fluid absorption was impaired in Nherf2(-/-) mice, demonstrating the requirement for NHERF2 in LPA(5) activity. However, fluid absorption was unaltered in Lpa(2)(-/-) mice. LPA stimulated NHE3 and fluid absorption in part by increasing NHE3 protein abundance at the brush border membrane of intestinal epithelial cells. CONCLUSIONS LPA is a potent stimulant of NHE3 and fluid absorption in the intestine, signaling through LPA(5). Regulation by LPA(5) depends on its interaction with NHERF2. LPA might be useful in the treatment of certain diarrheal diseases.


Journal of Biological Chemistry | 2008

IRBIT, Inositol 1,4,5-Triphosphate (IP3) Receptor-binding Protein Released with IP3, Binds Na+/H+ Exchanger NHE3 and Activates NHE3 Activity in Response to Calcium

Peijian He; Huanchun Zhang; C. Chris Yun

Calcium (Ca2+) is a highly versatile second messenger that regulates various cellular processes. Previous studies showed that elevation of intracellular Ca2+ regulates the activity of Na+/H+ exchanger 3 (NHE3). However, the effect of Ca2+-dependent signaling on NHE3 activity varies depending on cell types. In this study, we report the identification of IP3 receptor-binding protein released with IP3 (IRBIT) as a NHE3 interacting protein and its role in regulation of NHE3 activity. IRBIT bound to the carboxyl-terminal domain of NHE3, which is necessary for acute regulation of NHE3. Ectopic expression of IRBIT resulted in Ca2+-dependent activation of NHE3 activity, whereas silencing of endogenous IRBIT resulted in inhibition of NHE3 activity. Ca2+-dependent stimulation of NHE3 activity was dependent on the binding of IRBIT to NHE3. Previously Ca2+-dependent inhibition of NHE3 was demonstrated in the presence of NHERF2. Co-expression of IRBIT was able to reverse the NHERF2-dependent inhibition of NHE3. We also showed that IRBIT-dependent activation of NHE3 involves exocytic trafficking of NHE3 to the plasma membrane and this activation was blocked by inhibition of calmodulin (CaM) or CaM-dependent kinase II. These results suggest that the overall effect of Ca2+ on NHE3 activity is balanced by IRBIT-dependent activation and NHERF2-dependent inhibition.


Journal of Biological Chemistry | 2010

Activation of Na+/H+ Exchanger NHE3 by Angiotensin II Is Mediated by Inositol 1,4,5-Triphosphate (IP3) Receptor-binding Protein Released with IP3 (IRBIT) and Ca2+/Calmodulin-dependent Protein Kinase II

Peijian He; Janet D. Klein; C. Chris Yun

Angiotensin II (ANG II) stimulates renal tubular reabsorption of NaCl by targeting Na+/H+ exchanger NHE3. We have shown previously that inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) plays a critical role in stimulation of NHE3 in response to elevated intracellular Ca2+ concentration ([Ca2+]i). In this study, we investigated the role of IRBIT in mediating NHE3 activation by ANG II. IRBIT is abundantly expressed in the proximal tubules where NHE3 is located. ANG II at physiological concentrations stimulates NHE3 transport activity in a model proximal tubule cell line. ANG II-induced activation of NHE3 was abrogated by knockdown of IRBIT, whereas overexpression of IRBIT enhanced the effect of ANG II on NHE3. ANG II transiently increased binding of IRBIT to NHE3 at 5 min but became dissociated by 45 min. In comparison, it took at least 15 min of ANG II treatment for an increase in NHE3 activity and NHE3 surface expression. The stimulation of NHE3 by ANG II was dependent on changes in [Ca2+]i and Ca2+/calmodulin-dependent protein kinases II. Inhibition of CaMKII completely blocked the ANG II-induced binding of IRBIT to NHE3 and the increase in NHE3 surface abundance. Several serine residues of IRBIT are thought to be important for IRBIT binding. Mutations of Ser-68, Ser-71, and Ser-74 of IRBIT decreased binding of IRBIT to NHE3 and its effect on NHE3 activity. In conclusion, our current findings demonstrate that IRBIT is critically involved in mediating activation of NHE3 by ANG II via a Ca2+/calmodulin-dependent protein kinases II-dependent pathway.


BioMed Research International | 2010

Mechanisms of the Regulation of the Intestinal Na+/H+Exchanger NHE3

Peijian He; C. Chris Yun

A major of Na+ absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na+ and H+ by Na+/H+ exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na+/H+ exchanger regulation is based on heterologous expression of mammalian Na+/H+ exchangers in Na+/H+ exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionists approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract.


American Journal of Physiology-cell Physiology | 2011

Lysophosphatidic acid 5 receptor induces activation of Na+/H+ exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial cells

Byong Kwon Yoo; Peijian He; Sei-Jung Lee; C. Chris Yun

Na(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe cells. LPA(5)-dependent activation of NHE3 was blocked by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 and U0126, but not by phosphatidylinositol 3-kinase inhibitor LY294002 or phospholipase C-β inhibitor U73122. We found that LPA(5) transactivated the epidermal growth factor receptor (EGFR) and that inhibition of EGFR blocked LPA(5)-dependent activation of NHE3, suggesting an obligatory role of EGFR in the NHE3 regulation. Confocal immunofluorescence and surface biotinylation analyses showed that LPA(5) was located mostly in the apical membrane. EGFR, on the other hand, showed higher expression in the basolateral membrane. However, inhibition of apical EGFR, but not basolateral EGFR, abrogated LPA-induced regulation of MEK and NHE3, indicating that LPA(5) selectively activates apical EGFR. Furthermore, transactivation of EGFR independently activated the MEK-ERK pathway and proline-rich tyrosine kinase 2 (Pyk2). Similarly to MEK inhibition, knockdown of Pyk2 blocked activation of NHE3 by LPA. Furthermore, we showed that RhoA and Rho-associated kinase (ROCK) are involved in activation of Pyk2. Interestingly, LPA(5) did not directly activate RhoA but was required for transactivation of EGFR. Together, these results unveil a pivotal role of apical EGFR in NHE3 regulation by LPA and show that the RhoA-ROCK-Pyk2 and MEK-ERK pathways converge onto NHE3.


Molecular Biology of the Cell | 2011

Serum- and glucocorticoid-induced kinase 3 in recycling endosomes mediates acute activation of Na+/H+ exchanger NHE3 by glucocorticoids

Peijian He; Sei-Jung Lee; Songbai Lin; Ursula Seidler; Florian Lang; Géza Fejes-Tóth; Anikó Náray-Fejes-Tóth; C. Chris Yun

SGK1 plays an important role in regulation of Na+/H+ exchanger (NHE) 3 in vivo. We show that SGK3 colocalizes with NHE3 in recycling endosomes. These studies identify SGK3 as the effector of the PI3K pathway that activates NHE3 and show that endosomal localization of SGK3 is essential for acute activation of NHE3.


Pflügers Archiv: European Journal of Physiology | 2015

Evidence for a causal link between adaptor protein PDZK1 downregulation and Na + /H + exchanger NHE3 dysfunction in human and murine colitis

Sunil Yeruva; Giriprakash Chodisetti; Min Luo; Mingmin Chen; Ayhan Cinar; Lisa Ludolph; Maria Lünnemann; Julia Goldstein; Anurag Singh; Brigitte Riederer; Oliver Bachmann; André Bleich; Markus Gereke; Dunja Bruder; Susan J. Hagen; Peijian He; C. Chris Yun; Ursula Seidler

A dysfunction of the Na+/H+ exchanger isoform 3 (NHE3) significantly contributes to the reduced salt absorptive capacity of the inflamed intestine. We previously reported a strong decrease in the NHERF family member PDZK1 (NHERF3), which binds to NHE3 and regulates its function in a mouse model of colitis. The present study investigates whether a causal relationship exists between the decreased PDZK1 expression and the NHE3 dysfunction in human and murine intestinal inflammation. Biopsies from the colon of patients with ulcerative colitis, murine inflamed ileal and colonic mucosa, NHE3-transfected Caco-2BBe colonic cells with short hairpin RNA (shRNA) knockdown of PDZK1, and Pdzk1-gene-deleted mice were studied. PDZK1 mRNA and protein expression was strongly decreased in inflamed human and murine intestinal tissue as compared to inactive disease or control tissue, whereas that of NHE3 or NHERF1 was not. Inflamed human and murine intestinal tissues displayed correct brush border localization of NHE3 but reduced acid-activated NHE3 transport activity. A similar NHE3 transport defect was observed when PDZK1 protein content was decreased by shRNA knockdown in Caco-2BBe cells or when enterocyte PDZK1 protein content was decreased to similar levels as found in inflamed mucosa by heterozygote breeding of Pdzk1-gene-deleted and WT mice. We conclude that a decrease in PDZK1 expression, whether induced by inflammation, shRNA-mediated knockdown, or heterozygous breeding, is associated with a decreased NHE3 transport rate in human and murine enterocytes. We therefore hypothesize that inflammation-induced loss of PDZK1 expression may contribute to the NHE3 dysfunction observed in the inflamed intestine.


European Journal of Neuroscience | 2009

Sodium/bicarbonate cotransporter NBCn1/slc4a7 increases cytotoxicity in magnesium depletion in primary cultures of hippocampal neurons

Deborah S. Cooper; Han Soo Yang; Peijian He; Eun Jin Kim; Ira Rajbhandari; C. Chris Yun; Inyeong Choi

Growing evidence suggests that pharmacological inhibition of Na/H exchange and Na/HCO3 transport provides protection against damage or injury in cardiac ischemia. In this study, we examined the contribution of the sodium/bicarbonate cotransporter NBCn1 (slc4a7) to cytotoxicity in cultured hippocampal neurons of rats. In neurons exposed to extracellular pH (pHo) ranging from 6.2 to 8.3, NBCn1 protein expression increased by fivefold at pH < 6.5 compared to the expression at pHo 7.4. At pHo 6.5, the intracellular pH of neurons was ∼1 unit lower than that at pH 7.4. Immunochemistry showed a marked increase in NBCn1 immunofluorescence in plasma membranes and cytosol of the soma as well as in dendrites, at pHo 6.5. NBCn1 expression also increased by 40% in a prolonged Mg2+‐free incubation at normal pHo. Knockdown of NBCn1 in neurons had negligible effect on cell viability. The effect of NBCn1 knockdown on cytotoxicity was then determined by exposing neurons to 0.5 mm glutamate for 10 min and measuring lactate dehydrogenase (LDH) release from neurons. Compared to normal incubation (pHo 7.2 for 6 h) after glutamate exposure, acidic incubation (pHo 6.3 for 6 h) reduced cytotoxicity by 75% for control neurons and 78% for NBCn1‐knockdown neurons. Thus, both controls and knockdown neurons showed acidic protection from cytotoxicity. However, in Mg2+‐free incubation after glutamate exposure, NBCn1 knockdown progressively attenuated cytotoxicity. This attenuation was unaffected by acidic preincubation before glutamate exposure. We conclude that NBCn1 has a dynamic upregulation in low pHo and Mg2+ depletion. NBCn1 is not required for acidic protection, but increases cytotoxicity in Mg2+‐free conditions.


Journal of Clinical Investigation | 2015

Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss

Peijian He; Luqing Zhao; Lixin Zhu; Edward J. Weinman; Roberto De Giorgio; Michael Koval; Shanthi Srinivasan; Chang-Hyon Yun

Diarrhea is one of the troublesome complications of diabetes, and the underlying causes of this problem are complex. Here, we investigated whether altered electrolyte transport contributes to diabetic diarrhea. We found that the expression of Na+/H+ exchanger NHE3 and several scaffold proteins, including NHE3 regulatory factors (NHERFs), inositol trisphosphate (IP₃) receptor-binding protein released with IP₃ (IRBIT), and ezrin, was decreased in the intestinal brush border membrane (BBM) of mice with streptozotocin-induced diabetes. Treatment of diabetic mice with insulin restored intestinal NHE3 activity and fluid absorption. Molecular analysis revealed that NHE3, NHERF1, IRBIT, and ezrin form macrocomplexes, which are perturbed under diabetic conditions, and insulin administration reconstituted these macrocomplexes and restored NHE3 expression in the BBM. Silencing of NHERF1 or IRBIT prevented NHE3 trafficking to the BBM and insulin-dependent NHE3 activation. IRBIT facilitated the interaction of NHE3 with NHERF1 via protein kinase D2-dependent phosphorylation. Insulin stimulated ezrin phosphorylation, which enhanced the interaction of ezrin with NHERF1, IRBIT, and NHE3. Additionally, oral administration of lysophosphatidic acid (LPA) increased NHE3 activity and fluid absorption in diabetic mice via an insulin-independent pathway. Together, these findings indicate the importance of NHE3 in diabetic diarrhea and suggest LPA administration as a potential therapeutic strategy for management of diabetic diarrhea.


American Journal of Physiology-cell Physiology | 2015

Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2

Yi Ran No; Peijian He; Byong Kwon Yoo; C. Chris Yun

Na(+)/H(+) exchange by Na(+)/H(+) exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane. EGFR activates proline-rich tyrosine kinase 2 (Pyk2) and ERK, both of which are necessary for NHE3 regulation. However, Pyk2 and ERK are regulated by EGFR via independent pathways and appear to converge on an unidentified intermediate that ultimately targets NHE3. The p90 ribosomal S6 kinase (RSK) family of Ser/Thr protein kinases is a known effector of EGFR and ERK. Hence, we hypothesized that RSK may be the convergent effector of Pyk2 and ERK although it is not known whether Pyk2 regulates RSK. In this study, we show that Pyk2 is necessary for the maintenance of phosphoinositide-dependent kinase 1 (PDK1) autophosphorylation, and knockdown of Pyk2 or PDK1 mitigated LPA-induced phosphorylation of RSK and stimulation of NHE3 activity. Additionally, we show that RSK2, but not RSK1, is responsible for NHE3 regulation. RSK2 interacts with NHE3 at the apical membrane domain, where it phosphorylates NHE3. Alteration of S663 of NHE3 ablated LPA-induced phosphorylation of NHE3 and stimulation of the transport activity. Our study identifies RSK2 as a new kinase that regulates NHE3 activity by direct phosphorylation.

Collaboration


Dive into the Peijian He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luqing Zhao

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Sunil Yeruva

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge