Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peiqing Sun is active.

Publication


Featured researches published by Peiqing Sun.


Molecular and Cellular Biology | 2002

Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras-Induced Premature Senescence

Weiping Wang; Joan X. Chen; Rong Liao; Qingdong Deng; Jennifer J. Zhou; Shuang Huang; Peiqing Sun

ABSTRACT In primary mammalian cells, oncogenic ras induces premature senescence, depending on an active MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. It has been unclear how activation of the mitogenic MEK-ERK pathway by ras can confer growth inhibition. In this study, we have found that the stress-activated MAPK, p38, is also activated during the onset of ras-induced senescence in primary human fibroblasts. Constitutive activation of p38 by active MKK3 or MKK6 induces senescence. Oncogenic ras fails to provoke senescence when p38 activity is inhibited, suggesting that p38 activation is essential for ras-induced senescence. Furthermore, we have demonstrated that p38 activity is stimulated by ras as a result of an activated MEK-ERK pathway. Following activation of MEK and ERK, expression of oncogenic ras leads to the accumulation of active MKK3/6 and p38 activation in a MEK-dependent fashion and subsequently induces senescence. Active MEK1 induces the same set of changes and provokes senescence relying on active p38. Therefore, oncogenic ras provokes premature senescence by sequentially activating the MEK-ERK and MKK3/6-p38 pathways in normal, primary cells. These studies have defined the molecular events within the ras signaling cascade that lead to premature senescence and, thus, have provided new insights into how ras confers oncogenic transformation in primary cells.


Cell | 2007

PRAK is essential for ras-induced senescence and tumor suppression.

Peiqing Sun; Naoto Yoshizuka; Liguo New; Bettina A. Moser; Yilei Li; Rong Liao; Changchuan Xie; Jianming Chen; Qingdong Deng; Maria Yamout; Meng Qiu Dong; Costas G. Frangou; John R. Yates; Peter E. Wright; Jiahuai Han

Like apoptosis, oncogene-induced senescence is a barrier to tumor development. However, relatively little is known about the signaling pathways mediating the senescence response. p38-regulated/activated protein kinase (PRAK) is a p38 MAPK substrate whose physiological functions are poorly understood. Here we describe a role for PRAK in tumor suppression by demonstrating that PRAK mediates senescence upon activation by p38 in response to oncogenic ras. PRAK deficiency in mice enhances DMBA-induced skin carcinogenesis, coinciding with compromised senescence induction. In primary cells, inactivation of PRAK prevents senescence and promotes oncogenic transformation. Furthermore, we show that PRAK activates p53 by direct phosphorylation. We propose that phosphorylation of p53 by PRAK following activation of p38 MAPK by ras plays an important role in ras-induced senescence and tumor suppression.


Journal of Biological Chemistry | 1996

Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV

Peiqing Sun; Liming Lou; Richard A. Maurer

The ability of activating transcription factor-1 (ATF1) or the cAMP response element-binding protein (CREB) to enhance transcription can be stimulated by increases in intracellular Ca concentrations. To identify protein kinases which may mediate the ability of Ca to activate these transcription factors, we compared the ability of constitutively active forms of several Ca/calmodulin-dependent protein kinases (CaM kinases) to activate ATF1 or CREB. We find that constitutively active CaM kinase I and IV can activate both ATF1 and CREB. In addition, expression vectors for full-length CaM kinase I and IV were able to augment the ability of Ca influx to activate ATF1 or CREB consistent with a role for these kinases in mediating transcriptional responses to Ca signaling. In contrast, CaM kinase II was unable to activate either ATF1 or CREB. These findings provide a potential mechanism that may permit variation in the ability of ATF1 and CREB to respond to changes in intracellular Ca concentrations depending on differences in the relative concentrations of specific CaM kinases.


Cancer Research | 2010

The miR-17-92 Cluster of MicroRNAs Confers Tumorigenicity by Inhibiting Oncogene-Induced Senescence

Lixin Hong; Maoyi Lai; Michelle Chen; Changchuan Xie; Rong Liao; Young Jun Kang; Changchun Xiao; Wen-Yuan Hu; Jiahuai Han; Peiqing Sun

In mammalian cells, activation of oncogenes usually triggers innate tumor-suppressing defense mechanisms, including apoptosis and senescence, which are compromised by additional mutations before cancers are developed. The miR-17-92 gene cluster, a polycistron encoding six microRNAs (miRNA), is frequently overexpressed in human cancers and has been shown to promote several aspects of oncogenic transformation, including evasion of apoptosis. In the current study, we show a new role of miR-17-92 in inhibiting oncogenic ras-induced senescence. Further dissection of the miRNA components in this cluster reveals that the miR-17/20a seed family accounts for this antisenescence activity. miR-17 and miR-20a are both necessary and sufficient for conferring resistance to ras-induced senescence by directly targeting p21(WAF1), a key effector of senescence. By contrast, these components are not essential for the ability of miR-17-92 to evade Myc-induced apoptosis. Moreover, disruption of senescence by miR-17-92 or its miR-17/20a components leads to enhanced oncogenic transformation by activated ras in primary human cells. Taken together with previous reports that miR-17-92 inhibits apoptosis by suppressing Pten via the miR-19 components, our results indicate that this miRNA cluster promotes tumorigenesis by antagonizing both tumor-suppressing mechanisms, apoptosis, and senescence, through the activities of different miRNA components encoded in this cluster.


Cancer Research | 2004

Lysophosphatidic Acid Stimulates Ovarian Cancer Cell Migration via a Ras-MEK Kinase 1 Pathway

Dafang Bian; Shibing Su; Chitladda Mahanivong; Robert K. Cheng; Qiwei Han; Zhixing K. Pan; Peiqing Sun; Shuang Huang

Lysophosphatidic acid (LPA) is present at high concentrations in ascites and plasma of ovarian cancer patients. Studies conducted in experimental models demonstrate that LPA promotes ovarian cancer invasion/metastasis by up-regulating protease expression, elevating protease activity, and enhancing angiogenic factor expression. In this study, we investigated the effect of LPA on ovarian cancer migration, an essential component of cancer cell invasion. LPA stimulates both chemotaxis and chemokinesis of ovarian cancer cells and LPA-stimulated cell migration is GI dependent. Moreover, constitutively active H-Ras enhances ovarian cancer cell migration, whereas dominant negative H-Ras blocks LPA-stimulated cell migration, suggesting that Ras works downstream of Gi to mediate LPA-stimulated cell migration. Interestingly, H-Ras mutants that specifically activate Raf-1, Ral-GDS, or phosphatidylinositol 3′-kinase are unable to significantly enhance ovarian cancer cell migration, suggesting that a Ras downstream effector distinct from Raf-1, Ral-GDS, and phosphatidylinositol 3′-kinase is responsible for LPA-stimulated cell migration. In this article, we demonstrate that LPA activates mitogen-activated protein kinase kinase 1 (MEKK1) in a Gi-Ras-dependent manner and that MEKK1 activity is essential for LPA-stimulated ovarian cancer cell migration. Inhibitors that block MEKK1 downstream pathways, including MEK1/2, MKK4/7, and nuclear factor-κB pathways, do not significantly alter LPA-stimulated cell migration. Instead, LPA induces the redistribution of focal adhesion kinase to focal contact regions of the cytoplasm membrane, and this event is abolished by pertussis toxin, dominant negative H-Ras, or dominant negative MEKK1. Our studies thus suggest that the Gi-Ras-MEKK1 signaling pathway mediates LPA-stimulated ovarian cancer cell migration by facilitating focal adhesion kinase redistribution to focal contacts.


Trends in Biochemical Sciences | 2014

Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence

Yingxi Xu; Na Li; Rong Xiang; Peiqing Sun

Oncogene-induced senescence (OIS) is a tumor-suppressing response that must be disrupted for cancer to develop. Mechanistic insights into OIS have begun to emerge. Activation of the p53/p21(WAF1) and/or p16(INK4A) tumor-suppressor pathways is essential for OIS. Moreover, the DNA damage response, chromatin remodeling, and senescence-associated secretory phenotype (SASP) are important for the initiation and maintenance of OIS. This review discusses recent advances in elucidating the mechanisms of OIS, focusing on the roles of the p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/cellular homolog of murine thymoma virus AKT/mammalian target of rapamycin (mTOR) pathways. These studies indicate that OIS is mediated by an intricate signaling network. Further delineation of this network may lead to development of new cancer therapies targeting OIS.


Cell Cycle | 2012

Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence

Marina Kolesnichenko; Lixin Hong; Rong Liao; Peter K. Vogt; Peiqing Sun

Numerous stimuli, including oncogenic signaling, DNA damage or eroded telomeres trigger proliferative arrest, termed cellular senescence. Accumulating evidence suggests that cellular senescence is a potent barrier to tumorigenesis in vivo, however oncogene induced senescence can also promote cellular transformation.1,2 Several oncogenes, whose overexpression results in cellular senescence, converge on the TOR (target of rapamycin) pathway. We therefore examined whether attenuation of TOR results in delay or reversal of cellular senescence. By using primary human fibroblasts undergoing either replicative or oncogenic RAS-induced senescence, we demonstrated that senescence can be delayed, and some aspects of senescence can be reversed by inhibition of TOR, using either the TOR inhibitor rapamycin or by depletion of TORC1 (TOR Complex 1). Depletion of TORC2 fails to affect the course of replicative or RAS-induced senescence. Overexpression of REDD1 (Regulated in DNA Damage Response and Development), a negative regulator of TORC1, delays the onset of replicative senescence. These results indicate that TORC1 is an integral component of the signaling pathway that mediates cellular senescence.


Cellular Signalling | 2009

Inflammatory signaling and cellular senescence

Jian-Lin Ren; Jin-Shui Pan; Ya-Pi Lu; Peiqing Sun; Jiahuai Han

Inflammation acts as a double-edged sword in the pathogenesis of cancer. Inflammatory responses play a key role in eliminating potentially cancerous cells; however, an inflammatory microenvironment also promotes the development of cancer. Proinflammatory cytokines, the key mediators of inflammation, also play a dual role in oncogenesis. While they can promote neoplastic progression, recent studies have revealed an unexpected function of the inflammatory pathways in inhibiting cancer development. These studies demonstrate that cells undergoing senescence, a cellular program serving as a barrier to cancer development, produce increased amount of inflammatory cytokines. These inflammatory cytokines play an essential role in the initiation and maintenance of cellular senescence, and are responsible for triggering an innate immune response that clears the senescent tumor cells in vivo. The purpose of the present review is to discuss the dual roles of the inflammatory cytokines produced by senescent cells in the pathogenesis of cancer, and the signaling pathway mediating their role in cellular senescence.


Journal of Cell Biology | 2007

The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted

Enbo Liu; Alan Yueh Luen Lee; Takuya Chiba; Erin Olson; Peiqing Sun; Xiaohua Wu

DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)–mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammalian cells when the ATR checkpoint is intact. We also demonstrate that single-stranded DNA (ssDNA) is the initial signal that activates the checkpoint when licensing control is compromised in mammalian cells. We demonstrate that uncontrolled DNA unwinding by minichromosome maintenance proteins upon Cdt1 overexpression is an important mechanism that leads to ssDNA accumulation and checkpoint activation. Furthermore, we show that replication protein A 2 and retinoblastoma protein are both downstream targets for ATR that are important for the inhibition of DNA rereplication. We reveal the molecular mechanisms by which the ATR-mediated S phase checkpoint pathway prevents DNA rereplication and thus significantly improve our understanding of how rereplication is prevented in mammalian cells.


Journal of Biological Chemistry | 2009

p38α and p38γ Mediate Oncogenic ras-induced Senescence through Differential Mechanisms

Jinny Kwong; Lixin Hong; Rong Liao; Qingdong Deng; Jiahuai Han; Peiqing Sun

Oncogene-induced senescence is a tumor-suppressive defense mechanism triggered upon activation of certain oncogenes in normal cells. Recently, the senescence response to oncogene activation has been shown to act as a bona fide barrier to cancer development in vivo. Multiple previous studies have implicated the importance of the p38 MAPK pathway in oncogene-induced senescence. However, the contribution of each of the four p38 isoforms (encoded by different genes) to senescence induction is unclear. In the current study, we demonstrated that p38α and p38γ, but not p38β, play an essential role in oncogenic ras-induced senescence. Both p38α and p38γ are expressed in primary human fibroblasts and are activated upon transduction of oncogenic ras. Small hairpin RNA-mediated silencing of p38α or p38γ expression abrogated ras-induced senescence, whereas constitutive activation of p38α and p38γ caused premature senescence. Furthermore, upon activation by oncogenic ras, p38γ stimulated the transcriptional activity of p53 by phosphorylating p53 at Ser33, suggesting that the ability of p38γ to mediate senescence is at least partly achieved through p53. However, p38α contributed to ras-inducted senescence via a p53-indepdendent mechanism in cells by mediating ras-induced expression of p16INK4A, another key senescence effector. These findings have identified p38α and p38γ as essential components of the signaling pathway that regulates the tumor-suppressing senescence response, providing insights into the molecular mechanisms underlying the differential involvement of the p38 isoforms in senescence induction.

Collaboration


Dive into the Peiqing Sun's collaboration.

Top Co-Authors

Avatar

Rong Liao

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingdong Deng

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge