Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peixiang Zhang is active.

Publication


Featured researches published by Peixiang Zhang.


FEBS Letters | 2008

The lipin protein family: Dual roles in lipid biosynthesis and gene expression

Karen Reue; Peixiang Zhang

The prevalence of obesity in the western world has focused attention on factors that influence triglyceride biosynthesis, storage, and utilization. Members of the lipin protein family have a newly discovered enzymatic role in triglyceride and phospholipid biosynthesis as a phosphatidate phosphatase, and also act as an inducible transcriptional coactivator in conjunction with peroxisome proliferator‐activated receptor γ (PPARγ) coactivator‐1α and PPARα. Through these activities, the founding member of the family, lipin‐1, influences lipid metabolism and glucose homeostasis in diverse tissues including adipose tissue, skeletal muscle, and liver. The physiological roles of lipin‐2 and lipin‐3 are less well defined, but are likely to carry out similar functions in glycerolipid biosynthesis and gene expression in a distinct tissue distribution.


Journal of Biological Chemistry | 2009

A Conserved Serine Residue Is Required for the Phosphatidate Phosphatase Activity but Not the Transcriptional Coactivator Functions of Lipin-1 and Lipin-2

Jimmy Donkor; Peixiang Zhang; Samantha Wong; Lauren O'Loughlin; Jay Dewald; Bernard P. C. Kok; David N. Brindley; Karen Reue

Mammalian lipins (lipin-1, lipin-2, and lipin-3) are Mg2+-dependent phosphatidate phosphatase (PAP) enzymes, which catalyze a key reaction in glycerolipid biosynthesis. Lipin-1 also functions as a transcriptional coactivator in conjunction with members of the peroxisome proliferator-activated receptor family. An S734L mutation in LPIN2 causes Majeed syndrome, a human inflammatory disorder characterized by recurrent osteomyelitis, fever, dyserythropoietic anemia, and cutaneous inflammation. Here we demonstrate that mutation of the equivalent serine in mouse lipin-1 and lipin-2 to leucine or aspartate abolishes PAP activity but does not impair lipin association with microsomal membranes, the major site of glycerolipid synthesis. We also determined that lipin-2 has transcriptional coactivator activity for peroxisome proliferator-activated receptor-response elements similar to lipin-1 and that this activity is not affected by mutating the conserved serine. Therefore, our results indicate that the symptoms of the Majeed syndrome result from a loss of lipin-2 PAP activity. To characterize sites of lipin-2 action, we detected lipin-2 expression by in situ hybridization on whole mouse sections and by quantitative PCR of tissues relevant to Majeed syndrome. Lipin-2 was most prominently expressed in liver, where levels were much higher than lipin-1, and also in kidney, lung, gastrointestinal tract, and specific regions of the brain. Lipin-2 was also expressed in circulating red blood cells and sites of lymphopoiesis (bone marrow, thymus, and spleen). These results raise the possibility that the loss of lipin-2 PAP activity in erythrocytes and lymphocytes may contribute to the anemia and inflammation phenotypes observed in Majeed syndrome patients.


Journal of Biological Chemistry | 2012

Lipin-1 Phosphatidic Phosphatase Activity Modulates Phosphatidate Levels to Promote Peroxisome Proliferator-activated Receptor γ (PPARγ) Gene Expression during Adipogenesis

Peixiang Zhang; Kazuharu Takeuchi; Lauren S. Csaki; Karen Reue

Background: Lipin-1-deficient cells cannot differentiate into mature adipocytes. Results: Lipin-1 phosphatidic acid phosphatase activity, but not its coactivator activity, is required for induction of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). Conclusion: Lipin-1 modulation of phosphatidic acid levels is required for early steps in adipogenesis. Significance: The levels of signaling lipids are important in adipogenesis prior to fat storage. Adipose tissue plays a key role in metabolic homeostasis. Disruption of the Lpin1 gene encoding lipin-1 causes impaired adipose tissue development and function in rodents. Lipin-1 functions as a phosphatidate phosphatase (PAP) enzyme in the glycerol 3-phosphate pathway for triglyceride storage and as a transcriptional coactivator/corepressor for metabolic nuclear receptors. Previous studies established that lipin-1 is required at an early step in adipocyte differentiation for induction of the adipogenic gene transcription program, including the key regulator peroxisome proliferator-activated receptor γ (PPARγ). Here, we investigate the requirement of lipin-1 PAP versus coactivator function in the establishment of Pparg expression during adipocyte differentiation. We demonstrate that PAP activity supplied by lipin-1, lipin-2, or lipin-3, but not lipin-1 coactivator activity, can rescue Pparg gene expression and lipogenesis during adipogenesis in lipin-1-deficient preadipocytes. In adipose tissue from lipin-1-deficient mice, there is an accumulation of phosphatidate species containing a range of medium chain fatty acids and an activation of the MAPK/extracellular signal-related kinase (ERK) signaling pathway. Phosphatidate inhibits differentiation of cultured adipocytes, and this can be rescued by the expression of lipin-1 PAP activity or by inhibition of ERK signaling. These results emphasize the importance of lipid intermediates as choreographers of gene regulation during adipogenesis, and the results highlight a specific role for lipins as determinants of levels of a phosphatidic acid pool that influences Pparg expression.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum

Jennifer R. Dwyer; Jimmy Donkor; Peixiang Zhang; Lauren S. Csaki; Laurent Vergnes; Jessica M. Lee; Jay Dewald; David N. Brindley; Elisa Atti; Sotirios Tetradis; Yuko Yoshinaga; Pieter J. de Jong; Loren G. Fong; Stephen G. Young; Karen Reue

The three lipin phosphatidate phosphatase (PAP) enzymes catalyze a step in glycerolipid biosynthesis, the conversion of phosphatidate to diacylglycerol. Lipin-1 is critical for lipid synthesis and homeostasis in adipose tissue, liver, muscle, and peripheral nerves. Little is known about the physiological role of lipin-2, the predominant lipin protein present in liver and the deficient gene product in the rare disorder Majeed syndrome. By using lipin-2–deficient mice, we uncovered a functional relationship between lipin-1 and lipin-2 that operates in a tissue-specific and age-dependent manner. In liver, lipin-2 deficiency led to a compensatory increase in hepatic lipin-1 protein and elevated PAP activity, which maintained lipid homeostasis under basal conditions, but led to diet-induced hepatic triglyceride accumulation. As lipin-2–deficient mice aged, they developed ataxia and impaired balance. This was associated with the combination of lipin-2 deficiency and an age-dependent reduction in cerebellar lipin-1 levels, resulting in altered cerebellar phospholipid composition. Similar to patients with Majeed syndrome, lipin-2–deficient mice developed anemia, but did not show evidence of osteomyelitis, suggesting that additional environmental or genetic components contribute to the bone abnormalities observed in patients. Combined lipin-1 and lipin-2 deficiency caused embryonic lethality. Our results reveal functional interactions between members of the lipin family in vivo, and a unique role for lipin-2 in central nervous system biology that may be particularly important with advancing age. Additionally, as has been observed in mice and humans with lipin-1 deficiency, the pathophysiology in lipin-2 deficiency is associated with dysregulation of lipid intermediates.


Journal of Biological Chemistry | 2012

Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway

Sungwon Han; Shirin Bahmanyar; Peixiang Zhang; Nick V. Grishin; Karen Oegema; Roseann Crooke; Mark J. Graham; Karen Reue; Jack E. Dixon; Joel M. Goodman

Background: Lipins are phosphatidic acid phosphatases. In yeast, lipin is activated by the Nem1p-Spo7p complex. There is controversy as to whether a mammalian Spo7p ortholog exists. Results: The metazoan Spo7p ortholog is now identified and shown to interact with lipins in yeast, nematodes, and mammalian cells. Conclusion: NEP1-R1 is the metazoan Spo7p ortholog. Significance: The lipin activation system is conserved in evolution. Lipin-1 catalyzes the formation of diacylglycerol from phosphatidic acid. Lipin-1 mutations cause lipodystrophy in mice and acute myopathy in humans. It is heavily phosphorylated, and the yeast ortholog Pah1p becomes membrane-associated and active upon dephosphorylation by the Nem1p-Spo7p membrane complex. A mammalian ortholog of Nem1p is the C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly “dullard”), but its Spo7p-like partner is unknown, and the need for its existence is debated. Here, we identify the metazoan ortholog of Spo7p, TMEM188, renamed nuclear envelope phosphatase 1-regulatory subunit 1 (NEP1-R1). CTDNEP1 and NEP1-R1 together complement a nem1Δspo7Δ strain to block endoplasmic reticulum proliferation and restore triacylglycerol levels and lipid droplet number. The two human orthologs are in a complex in cells, and the amount of CTDNEP1 is increased in the presence of NEP1-R1. In the Caenorhabditis elegans embryo, expression of nematode CTDNEP1 and NEP1-R1, as well as lipin-1, is required for normal nuclear membrane breakdown after zygote formation. The expression pattern of NEP1-R1 and CTDNEP1 in human and mouse tissues closely mirrors that of lipin-1. CTDNEP1 can dephosphorylate lipins-1a, -1b, and -2 in human cells only in the presence of NEP1-R1. The nuclear fraction of lipin-1b is increased when CTDNEP1 and NEP1-R1 are co-expressed. Therefore, NEP1-R1 is functionally conserved from yeast to humans and functions in the lipin activation pathway.


The FASEB Journal | 2015

PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis

Diana M. Shih; Janet M. Yu; Laurent Vergnes; Nassim Dali-Youcef; Matthew D. Champion; Asokan Devarajan; Peixiang Zhang; Lawrence W. Castellani; David N. Brindley; Carole Jamey; Johan Auwerx; Srinivasa T. Reddy; David A. Ford; Karen Reue; Aldons J. Lusis

We report the engineering and characterization of paraoxonase‐3 knockout mice (Pon3KO). The mice were generally healthy but exhibited quantitative alterations in bile acid metabolism and a 37% increased body weight compared to the wild‐type mice on a high fat diet. PON3 was enriched in the mitochondria‐associated membrane fraction of hepatocytes. PON3 deficiency resulted in impaired mitochondrial respiration, increased mitochondrial superoxide levels, and increased hepatic expression of inflammatory genes. PON3 deficiency did not influence atherosclerosis development on an apolipoprotein E null hyperlipidemic background, but it did lead to a significant 60% increase in atherosclerotic lesion size in Pon3KO mice on the C57BL/6J background when fed a cholate‐cholesterol diet. On the diet, the Pon3KO had significantly increased plasma intermediate‐density lipoprotein/LDL cholesterol and bile acid levels. They also exhibited significantly elevated levels of hepatotoxicity markers in circulation, a 58% increase in gallstone weight, a 40% increase in hepatic cholesterol level, and increased mortality. Furthermore, Pon3KO mice exhibited decreased hepatic bile acid synthesis and decreased bile acid levels in the small intestine compared with wild‐type mice. Our study suggests a role for PON3 in the metabolism of lipid and bile acid as well as protection against atherosclerosis, gallstone disease, and obesity.—Shih, D. M., Yu, J. M., Vergnes, L., Dali‐Youcef, N., Champion, M. D., Devarajan, A., Zhang, P., Castellani, L. W., Brindley, D. N., Jamey, C. Auwerx, J., Reddy, S. T., Ford, D. A., Reue, K., Lusis, A. J. PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB J. 29, 1185‐1197 (2015). www.fasebj.org


Biochimica et Biophysica Acta | 2017

Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond ☆

Peixiang Zhang; Karen Reue

The regulation of glycerolipid biosynthesis is critical for homeostasis of cellular lipid stores and membranes. Here we review the role of lipin phosphatidic acid phosphatase enzymes in glycerolipid synthesis. Lipin proteins are unique among glycerolipid biosynthetic enzymes in their ability to transit among cellular membranes, rather than remain membrane tethered. We focus on the mechanisms that underlie lipin protein interactions with membranes and the versatile roles of lipins in several organelles, including the endoplasmic reticulum, mitochondria, endolysosomes, lipid droplets, and nucleus. We also review the corresponding physiological roles of lipins, which have been uncovered by the study of genetic lipin deficiencies. We propose that the growing body of knowledge concerning the biochemical and cellular activities of lipin proteins will be valuable for understanding the physiological functions of lipin proteins in health and disease. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Journal of Biological Chemistry | 2016

StarD7 Protein Deficiency Adversely Affects the Phosphatidylcholine Composition, Respiratory Activity, and Cristae Structure of Mitochondria.

Yasuhiro Horibata; Hiromi Ando; Peixiang Zhang; Laurent Vergnes; Chieko Aoyama; Masahiko Itoh; Karen Reue; Hiroyuki Sugimoto

Phosphatidylcholine (PC) is a major phospholipid of mitochondria, comprising 40–50% of both the outer and the inner membranes. However, PC must be imported from its production organelles because mitochondria lack the enzymes essential for PC biosynthesis. In a previous study, we found that StarD7 mediates the intracellular transfer of PC to mitochondria. Therefore, in this study, we analyzed the contribution of StarD7 to the maintenance of mitochondrial phospholipid content and function using siRNA-mediated knockdown and knock-out (KO) of the StarD7 gene in HEPA-1 cells. Real time analysis of respiratory activity demonstrated that the oxygen consumption rate and activity of mitochondrial complexes were impaired in StarD7-KD cells. To confirm these results, we established StarD7-KO HEPA-1 cells by double nicking using CRISPR/Cas9n. As expected, StarD7-KD and -KO cells showed a significant reduction in mitochondrial PC content. The ATP level and growth rate of KO cells were notably lower compared with wild-type cells when cultured in glucose-free galactose-containing medium to force cells to rely on mitochondrial ATP production. In KO cells, the level of the MTCO1 protein, a primary subunit of complex IV, was reduced without a concomitant decrease in its mRNA, but the level was restored when StarD7-I was overexpressed. StarD7-KO cells showed impaired formation of the mitochondrial supercomplexes and exhibited a disorganized cristae structure, with no changes in optic atrophy 1 protein. These findings indicate that StarD7 plays important roles in maintaining the proper composition of mitochondrial phospholipids as well as mitochondrial function and morphogenesis.


Human Molecular Genetics | 2009

Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models

Jack Phan; Miriam A. Hickey; Peixiang Zhang; Marie-Françoise Chesselet; Karen Reue


Journal of Lipid Research | 2008

Regulation of lipin-1 gene expression by glucocorticoids during adipogenesis

Peixiang Zhang; Lauren O'Loughlin; David N. Brindley; Karen Reue

Collaboration


Dive into the Peixiang Zhang's collaboration.

Top Co-Authors

Avatar

Karen Reue

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimmy Donkor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana M. Shih

University of California

View shared research outputs
Top Co-Authors

Avatar

Elisa Atti

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge