Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peizhong Mao is active.

Publication


Featured researches published by Peizhong Mao.


Human Molecular Genetics | 2011

Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease

Marcus J. Calkins; Maria Manczak; Peizhong Mao; Ulziibat P. Shirendeb; P. Hemachandra Reddy

Increasing evidence suggests that the accumulation of amyloid beta (Aβ) in synapses and synaptic mitochondria causes synaptic mitochondrial failure and synaptic degeneration in Alzheimers disease (AD). The purpose of this study was to better understand the effects of Aβ in mitochondrial activity and synaptic alterations in neurons from a mouse model of AD. Using primary neurons from a well-characterized Aβ precursor protein transgenic (AβPP) mouse model (Tg2576 mouse line), for the first time, we studied mitochondrial activity, including axonal transport of mitochondria, mitochondrial dynamics, morphology and function. Further, we also studied the nature of Aβ-induced synaptic alterations, and cell death in primary neurons from Tg2576 mice, and we sought to determine whether the mitochondria-targeted antioxidant SS31 could mitigate the effects of oligomeric Aβ. We found significantly decreased anterograde mitochondrial movement, increased mitochondrial fission and decreased fusion, abnormal mitochondrial and synaptic proteins and defective mitochondrial function in primary neurons from AβPP mice compared with wild-type (WT) neurons. Transmission electron microscopy revealed a large number of small mitochondria and structurally damaged mitochondria, with broken cristae in AβPP primary neurons. We also found an increased accumulation of oligomeric Aβ and increased apoptotic neuronal death in the primary neurons from the AβPP mice relative to the WT neurons. Our results revealed an accumulation of intraneuronal oligomeric Aβ, leading to mitochondrial and synaptic deficiencies, and ultimately causing neurodegeneration in AβPP cultures. However, we found that the mitochondria-targeted antioxidant SS31 restored mitochondrial transport and synaptic viability, and decreased the percentage of defective mitochondria, indicating that SS31 protects mitochondria and synapses from Aβ toxicity.


Human Molecular Genetics | 2011

Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage

Ulziibat P. Shirendeb; Arubala P. Reddy; Maria Manczak; Marcus J. Calkins; Peizhong Mao; Danilo A. Tagle; P. Hemachandra Reddy

The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntingtons disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt oligomers in the nucleus of HD neurons and in mitochondria may disrupt neuronal functions. Based on these findings, we propose that mutant Htt in association with mitochondria imbalance and mitochondrial dynamics impairs axonal transport of mitochondria, decreases mitochondrial function and damages neurons in affected brain regions of HD patients.


Biochimica et Biophysica Acta | 2012

Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: Implications to mitochondria-targeted antioxidant therapeutics

P. Hemachandra Reddy; Raghav Tripathi; Quang Troung; Karuna Tirumala; Tejaswini P. Reddy; Vishwanath Anekonda; Ulziibat P. Shirendeb; Marcus J. Calkins; Arubala P. Reddy; Peizhong Mao; Maria Manczak

Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimers disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Biochimica et Biophysica Acta | 2011

Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics.

Peizhong Mao; P. Hemachandra Reddy

Alzheimers disease (AD) is an age-related progressive neurodegenerative disease affecting thousands of people in the world and effective treatment is still not available. Over two decades of intense research using AD postmortem brains, transgenic mouse and cell models of amyloid precursor protein and tau revealed that amyloid beta (Aβ) and hyperphosphorylated tau are synergistically involved in triggering disease progression. Accumulating evidence also revealed that aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction initiate and contributes to the development and progression of the disease. The purpose of this article is to summarize the latest progress in aging and AD, with a special emphasis on the mitochondria, oxidative DNA damage including methods of its measurement. It also discusses the therapeutic approaches against oxidative DNA damage and treatment strategies in AD.


Human Molecular Genetics | 2012

Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease

Ulziibat P. Shirendeb; Marcus J. Calkins; Maria Manczak; Vishwanath Anekonda; Brett D. Dufour; Jodi L. McBride; Peizhong Mao; P. Hemachandra Reddy

The purpose of this study was to investigate the link between mutant huntingtin (Htt) and neuronal damage in relation to mitochondria in Huntingtons disease (HD). In an earlier study, we determined the relationship between mutant Htt and mitochondrial dynamics/synaptic viability in HD patients. We found mitochondrial loss, abnormal mitochondrial dynamics and mutant Htt association with mitochondria in HD patients. In the current study, we sought to expand on our previous findings and further elucidate the relationship between mutant Htt and mitochondrial and synaptic deficiencies. We hypothesized that mutant Htt, in association with mitochondria, alters mitochondrial dynamics, leading to mitochondrial fragmentation and defective axonal transport of mitochondria in HD neurons. In this study, using postmortem HD brains and primary neurons from transgenic BACHD mice, we identified mutant Htt interaction with the mitochondrial protein Drp1 and factors that cause abnormal mitochondrial dynamics, including GTPase Drp1 enzymatic activity. Further, using primary neurons from BACHD mice, for the first time, we studied axonal transport of mitochondria and synaptic degeneration. We also investigated the effect of mutant Htt aggregates and oligomers in synaptic and mitochondrial deficiencies in postmortem HD brains and primary neurons from BACHD mice. We found that mutant Htt interacts with Drp1, elevates GTPase Drp1 enzymatic activity, increases abnormal mitochondrial dynamics and results in defective anterograde mitochondrial movement and synaptic deficiencies. These observations support our hypothesis and provide data that can be utilized to develop therapeutic targets that are capable of inhibiting mutant Htt interaction with Drp1, decreasing mitochondrial fragmentation, enhancing axonal transport of mitochondria and protecting synapses from toxic insults caused by mutant Htt.


Biochimica et Biophysica Acta | 2010

Is multiple sclerosis a mitochondrial disease

Peizhong Mao; P. Hemachandra Reddy

Abstract Multiple sclerosis (MS) is a relatively common and etiologically unknown disease with no cure. It is the leading cause of neurological disability in young adults, affecting over two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability. Recently, MS has become increasingly viewed as a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system leads to permanent neurological and clinical disability. In this article, we discuss the latest developments on MS research, including etiology, pathology, genetic association, EAE animal models, mechanisms of neuronal injury and axonal transport, and therapeutics. In this article, we also focus on the mechanisms of mitochondrial dysfunction that are involved in MS, including mitochondrial DNA defects, and mitochondrial structural/functional changes.


Brain Research Reviews | 2009

Mitochondrial structural and functional dynamics in Huntington's disease

P. Hemachandra Reddy; Peizhong Mao; Maria Manczak

Huntingtons disease (HD) is an autosomal, dominantly inherited neurodegenerative disorder, characterized by chorea, involuntary movements, and cognitive impairments. Tremendous progress has been made since the discovery of HD gene in 1993, in terms of developing animal models to study the disease process, unraveling the expression and function of wild-type and mutant huntingtin (Htt) proteins in the central and peripheral nervous systems, and understanding expanded CAG repeat containing mutant Htt protein interactions with CNS proteins in the disease process. HD progression has been found to involve several pathomechanisms, including expanded CAG repeat protein interaction with other CNS proteins, transcriptional dysregulation, calcium dyshomeostasis, abnormal vesicle trafficking, and defective mitochondrial bioenergetics. Recent studies have found that mutant Htt is associated with mitochondria and causes mitochondrial structural changes, decreases mitochondrial trafficking, and impairs mitochondrial dynamics in the neurons affected by HD. This article discusses recent developments in HD research, with a particular focus on intracellular and intramitochondrial calcium influx, mitochondrial DNA defects, and mitochondrial structural and functional abnormalities in HD development and progression. Further, this article outlines the current status of mitochondrial therapeutics with a special reference to Dimebon.


Human Molecular Genetics | 2009

Neutralization of granulocyte macrophage colony-stimulating factor decreases amyloid beta 1-42 and suppresses microglial activity in a transgenic mouse model of Alzheimer's disease

Maria Manczak; Peizhong Mao; Kazuhiro Nakamura; Christopher Bebbington; Byung Park; P. Hemachandra Reddy

The purpose of our study was to investigate microglia and astrocytes that are associated with human mutant amyloid precursor protein and amyloid beta (Abeta). We investigated whether the anti-granulocyte-macrophage-colony stimulating factor (GM-CSF) antibody can suppress microglial activity and decrease Abeta production in Alzheimers disease transgenic mice (Tg2576 line). An antibody to mouse GM-CSF was introduced by intracerebroventricular (ICV) injections into the brains of 10-month-old Tg2576 male mice. We assessed the effect of several GM-CSF-associated cytokines on microglial activities and their association with Abeta using quantitative real-time RT-PCR, immunoblotting, immunohistochemistry analyses in anti-GM-CSF antibody-injected Tg2576 mice. Using sandwich ELISA technique, we measured intraneuronal Abeta in Tg2576 mice injected with GM-CSF antibody and PBS vehicle-injected control Tg2576 mice. Using double-labeling immunofluorescence analysis of intraneuronal Abeta, Abeta deposits and pro-inflammatory cytokines, we assessed the relationship between Abeta deposits and microglial markers in the Tg2576 mice, and also in the anti-GM-CSF antibody-injected Tg2576 mice. Our real-time RT-PCR analysis showed an increase in the mRNA expression of IL6, CD11c, IL1beta, CD40 and CD11b in the cerebral cortices of the Tg2576 mice compared with their littermate non-transgenic controls. Immunohistochemistry findings of microglial markers agreed with our real-time RT-PCR results. Interestingly, we found significantly decreased levels of activated microglia and Abeta deposits in anti-GM-CSF antibody-injected Tg2576 mice compared with PBS vehicle-injected Tg2576 mice. Findings from our real-time RT-PCR and immunoblotting analysis agreed with immunohistochemistry results. Our double-labeling analyses of intraneuronal Abeta and CD40 revealed that intraneuronal Abeta is associated with neuronal expression of CD40 in Tg2576 mice. Our quantitative sandwich ELISA analysis revealed decreased levels of soluble Abeta1-42 and increased levels of Abeta1-40 in Tg2576 mice injected with the anti-GM-CSF antibody, suggesting that anti-GM-CSF antibody alone decreases soluble Abeta1-42 production and suppresses microglial activity in Tg2576 mice. These findings indicating the ability of the anti-GM-CSF antibody to reduce Abeta1-42 and microglial activity in Tg2576 mice may have therapeutic implications for Alzheimers disease.


Journal of Neurochemistry | 2009

Granulocyte-Macrophage Colony-Stimulating Factor Antibody] Suppresses Microglial Activity: Implications for Anti-inflammatory Effects in Alzheimer's Disease and Multiple Sclerosis

P. Hemachandra Reddy; Maria Manczak; Wei Zhao; Kazuhiro Nakamura; Christopher Bebbington; Geoffrey T. Yarranton; Peizhong Mao

The objective of our study was to determine granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) activity in the brain following GM‐CSF induction. We injected recombinant mouse GM‐CSF into the brains of 8‐month‐old C57BL6 mice via intracerebroventricular injections and studied the activities of microglia, astrocytes, and neurons. We also sought to determine whether an anti‐GM‐CSF antibody could suppress endogenous microglial activity in the C57BL6 mice and could also suppress microglial activity induced by the recombinant mouse GM‐CSF in another group of C57BL6 mice. Using quantitative real‐time RT‐PCR, we assessed microglial, astrocytic, and neuronal activity by measuring mRNA expression of pro‐inflammatory cytokines, GFAP, and the neuronal marker NeuN in the cerebral cortex tissues from C57BL6 mice. We performed immunoblotting and immunohistochemistry of activated microglia in different regions of the brains from control (phosphate‐buffered saline‐injected C57BL6 mice) and experimental mice (recombinant GM‐CSF‐injected C57BL6 mice, GM‐CSF antibody‐injected C57BL6 mice, and recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody‐injected C57BL6 mice). We found increased mRNA expression of CD40 (9.75‐fold), tumor necrosis factor‐alpha (2.1‐fold), CD45 (1.73‐fold), and CD11c (1.70‐fold) in the cerebral cortex of C57BL6 mice that were induced with recombinant GM‐CSF, compared with control mice. Further, the anti‐GM‐CSF antibody suppressed microglia in mice that were induced with recombinant GM‐CSF. Our immunoblotting and immunohistochemistry findings of GM‐CSF‐associated cytokines in C57BL6 mice induced with recombinant GM‐CSF, in C57BL6 mice injected with the anti‐GM‐CSF antibody, and in C57BL6 mice injected with recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody concurred with our real‐time RT‐PCR findings. These findings suggest that GM‐CSF is critical for microglial activation and that anti‐GM‐CSF antibody suppresses microglial activity in the CNS. The findings from this study may have implications for anti‐inflammatory effects of Alzheimer’s disease and experimental autoimmune encephalomyelitis mice (a multiple sclerosis mouse model).


Biochimica et Biophysica Acta | 2012

Mitochondrial DNA deletions and differential mitochondrial DNA content in Rhesus monkeys: implications for aging

Peizhong Mao; Patience Gallagher; Samira Nedungadi; Maria Manczak; Ulziibat P. Shirendeb; Steven G. Kohama; Betsy Ferguson; Byung Park; P. Hemachandra Reddy

The purpose of this study was to determine the relationship between mitochondrial DNA (mtDNA) deletions, mtDNA content and aging in rhesus monkeys. Using 2 sets of specific primers, we amplified an 8 kb mtDNA fragment covering a common 5.7 kb deletion and the entire 16.5 kb mitochondrial genome in the brain and buffy-coats of young and aged monkeys. We studied a total of 66 DNA samples: 39 were prepared from a buffy-coat and 27 were prepared from occipital cortex tissues. The mtDNA data were assessed using a permutation test to identify differences in mtDNA, in the different monkey groups. Using real-time RT-PCR strategy, we also assessed both mtDNA and nuclear DNA levels for young, aged and male and female monkeys. We found a 5.7 kb mtDNA deletion in 81.8% (54 of 66) of the total tested samples. In the young group of buffy-coat DNA, we found 5.7 kb deletions in 7 of 17 (41%), and in the aged group, we found 5.7 kb deletions in 12 of 22 (54%), suggesting that the prevalence of mtDNA deletions is related to age. We found decreased mRNA levels of mtDNA in aged monkeys relative to young monkeys. The increases in mtDNA deletions and mtDNA levels in aged rhesus monkeys suggest that damaged DNA accumulates as rhesus monkeys age and these altered mtDNA changes may have physiological relevance to compensate decreased mitochondrial function.

Collaboration


Dive into the Peizhong Mao's collaboration.

Top Co-Authors

Avatar

P. Hemachandra Reddy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Maria Manczak

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Ulziibat P. Shirendeb

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Marcus J. Calkins

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Arubala P. Reddy

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vishwanath Anekonda

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betsy Ferguson

Oregon National Primate Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge