Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peng Cui is active.

Publication


Featured researches published by Peng Cui.


Science | 2002

A draft sequence of the rice genome (Oryza sativa L. ssp indica)

Jun Yu; Songnian Hu; Jun Wang; Gane Ka-Shu Wong; Songgang Li; Bin Liu; Yajun Deng; Yan Zhou; Xiuqing Zhang; Mengliang Cao; Jing Liu; Jiandong Sun; Jiabin Tang; Yanjiong Chen; Xiaobing Huang; Wei Lin; Chen Ye; Wei Tong; Lijuan Cong; Jianing Geng; Yujun Han; Lin Li; Wei Li; Guangqiang Hu; Xiangang Huang; Wenjie Li; Jian Li; Zhanwei Liu; Long Li; Jianping Liu

The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.


BMC Genomics | 2010

Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection

Yinnan Mu; Feng Ding; Peng Cui; Jingqun Ao; Songnian Hu; Xinhua Chen

BackgroundThe large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China suffering from severe outbreaks of infectious disease caused by marine bacteria such as Aeromonas hydrophila (A. hydrophila), resulting in great economic losses. However, the mechanisms involved in the immune response of this fish to bacterial infection are not fully understood. To understand the molecular mechanisms underlying the immune response to such pathogenic bacteria, we used high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the large yellow croaker infected with A. hydrophila.ResultsA total of 13,611,340 reads were obtained and assembled into 26,313 scaffolds in transcriptional responses of the A. hydrophila-infected large yellow croaker. Via annotation to the NCBI database, we obtained 8216 identified unigenes. In total, 5590 (68%) unigenes were classified into Gene Ontology, and 3094 unigenes were found in 20 KEGG categories. These genes included representatives from almost all functional categories. By using Solexa/Illuminas DeepSAGE, 1996 differentially expressed genes (P value < 0.05) were detected in comparative analysis of the expression profiles between A. hydrophila-infected fish and control fish, including 727 remarkably upregulated genes and 489 remarkably downregulated genes. Dramatic differences were observed in genes involved in the inflammatory response. Bacterial infection affected the gene expression of many components of signaling cascades, including the Toll-like receptor, JAK-STAT, and MAPK pathways. Genes encoding factors involved in T cell receptor (TCR) signaling were also revealed to be regulated by infection in these fish.ConclusionBased on our results, we conclude that the inflammatory response may play an important role in the early stages of infection. The signaling cascades such as the Toll-like receptor, JAK-STAT, and MAPK pathways are regulated by A. hydrophila infection. Interestingly, genes encoding factors involved in TCR signaling were revealed to be downregulated by infection, indicating that TCR signaling was suppressed at this early period. These results revealed changes of multiple signaling pathways involved in immunity during A. hydrophila infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the large yellow croaker.


Genomics | 2010

A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing

Peng Cui; Qiang Lin; Feng Ding; Chengqi Xin; Wei Gong; Lingfang Zhang; Jianing Geng; Bing Zhang; Xiaomin Yu; Jin Yang; Songnian Hu; Jun Yu

To compare the two RNA-sequencing protocols, ribo-minus RNA-sequencing (rmRNA-seq) and polyA-selected RNA-sequencing (mRNA-seq), we acquired transcriptomic data-52 and 32 million alignable reads of 35 bases in length-from the mouse cerebrum, respectively. We found that a higher proportion, 44% and 25%, of the uniquely alignable rmRNA-seq reads, is in intergenic and intronic regions, respectively, as compared to 23% and 15% from the mRNA-seq dataset. Further analysis made an additional discovery of transcripts of protein-coding genes (such as Histone, Heg1, and Dux), ncRNAs, snoRNAs, snRNAs, and novel ncRNAs as well as repeat elements in rmRNA-seq dataset. This result suggests that rmRNA-seq method should detect more polyA- or bimorphic transcripts. Finally, through comparative analyses of gene expression profiles among multiple datasets, we demonstrated that different RNA sample preparations may result in significant variations in gene expression profiles.


Theoretical and Applied Genetics | 2004

Characterization of soybean genomic features by analysis of its expressed sequence tags.

Ai-Guo Tian; Jun Wang; Peng Cui; Yujun Han; Hao Xu; Lijuan Cong; Xiangang Huang; Xiaoling Wang; Yongzhi Jiao; B. Wang; Yong-Jun Wang; Zhang J; Shou-Yi Chen

We analyzed 314,254 soybean expressed sequence tags (ESTs), including 29,540 from our laboratory and 284,714 from GenBank. These ESTs were assembled into 56,147 unigenes. About 76.92% of the unigenes were homologous to genes from Arabidopsis thaliana (Arabidopsis). The putative products of these unigenes were annotated according to their homology with the categorized proteins of Arabidopsis. Genes corresponding to cell growth and/or maintenance, enzymes and cell communication belonged to the slow-evolving class, whereas genes related to transcription regulation, cell, binding and death appeared to be fast-evolving. Soybean unigenes with no match to genes within the Arabidopsis genome were identified as soybean-specific genes. These genes were mainly involved in nodule development and the synthesis of seed storage proteins. In addition, we also identified 61 genes regulated by salicylic acid, 1,322 transcription factor genes and 326 disease resistance-like genes from soybean unigenes. SSR analysis showed that the soybean genome was more complex than the Arabidopsis and the Medicago truncatula genomes. GC content in soybean unigene sequences is similar to that in Arabidopsis and M. truncatula. Furthermore, the combined analysis of the EST database and the BAC-contig sequences revealed that the total gene number in the soybean genome is about 63,501.


BMC Genomics | 2009

Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14

Feng Ding; Petrus Tang; Mei-Hua Hsu; Peng Cui; Songnian Hu; Jun Yu; Cheng-Hsun Chiu

BackgroundStreptococcus pneumoniae serotype 14 is one of the most common pneumococcal serotypes that cause invasive pneumococcal diseases worldwide. Serotype 14 often expresses resistance to a variety of antimicrobial agents, resulting in difficulties in treatment. To gain insight into the evolution of virulence and antimicrobial resistance traits in S. pneumoniae from the genome level, we sequenced the entire genome of a serotype 14 isolate (CGSP14), and carried out comprehensive comparison with other pneumococcal genomes. Multiple serotype 14 clinical isolates were also genotyped by multilocus sequence typing (MLST).ResultsComparative genomic analysis revealed that the CGSP14 acquired a number of new genes by horizontal gene transfer (HGT), most of which were associated with virulence and antimicrobial resistance and clustered in mobile genetic elements. The most remarkable feature is the acquisition of two conjugative transposons and one resistance island encoding eight resistance genes. Results of MLST suggested that the major driving force for the genome evolution is the environmental drug pressure.ConclusionThe genome sequence of S. pneumoniae serotype 14 shows a bacterium with rapid adaptations to its lifecycle in human community. These include a versatile genome content, with a wide range of mobile elements, and chromosomal rearrangement; the latter re-balanced the genome after events of HGT.


Animal Genetics | 2009

Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus)

R. Ji; Peng Cui; Feng Ding; Jianing Geng; Hongwei Gao; Heping Zhang; Jun Yu; Songnian Hu; He Meng

The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang, three Camelus bactrianus sunite, three Camelus bactrianus alashan, three Camelus bactrianus red, three Camelus bactrianus brown and three Camelus bactrianus normal) and three wild camels (Camelus bactrianus ferus). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina.


BMC Genomics | 2011

Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line

Huitao Liu; Peng Cui; Kehui Zhan; Qiang Lin; Guoyin Zhuo; Xiaoli Guo; Feng Ding; Wenlong Yang; Dongcheng Liu; Songnian Hu; Jun Yu; Aimin Zhang

BackgroundPlant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line.ResultsThe complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants.ConclusionThe complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.


BMC Bioinformatics | 2012

Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance.

Zhang Zhang; Jun Li; Peng Cui; Feng Ding; Ang Li; Jeffrey P. Townsend; Jun Yu

BackgroundGenetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB). Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis.ResultsHere we propose a novel measure--Codon Deviation Coefficient (CDC)--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance.ConclusionsAs validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions.


Functional & Integrative Genomics | 2010

Novel microRNAs in silkworm (Bombyx mori).

Yimei Cai; Xiaomin Yu; Qing Zhou; Caixia Yu; Haiyan Hu; Jiucheng Liu; Hongbin Lin; Jin Yang; Bing Zhang; Peng Cui; Songnian Hu; Jun Yu

We acquired more than 4 million useful sequences using a high-throughput method from a library for miRNA identification, which is constructed from a mixture of 14 RNA samples from different developmental stages. We mapped 247,410 reads to known silkworm miRNAs in miRBase (13.0), 701,913 reads to other RNA molecules based on sequence homology, and 3,219,395 reads to the silkworm genome. Our analysis identified 54 silkworm known miRNAs. A striking strand bias between miRNAs and their corresponding miRNA*s was found, and was speculated to reflect that transcripts from the passenger strand of pre-miRNAs may have important biological roles. Using an elaborate screening protocol, we predicted 287 candidate novel miRNAs (represent 116,494 short reads), and 59 of them have both miRNA and miRNA* sequences. Most of the previously identified silkworm miRNAs are cross-species conserved with a high abundance, while those predicted candidates tend to be species-specific miRNAs. Our discovery of SNPs among miRNAs implied within-species functional diversity. Target prediction uncovers that considerable silkworm miRNAs may aim at modulating more than one hormone signaling pathway components and/or hormone biosynthesis-related proteins implying their important roles in silkworm development.


Science China-life Sciences | 2013

Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing

Wei Gong; Linlin Pan; Qiang Lin; YuanYuan Zhou; Chengqi Xin; Xiaomin Yu; Peng Cui; Songnian Hu; Jun Yu

Mammalian testis development is a complex and highly sophisticated process. To study the dynamic change of normal testis development at the transcriptional level, we investigated mouse testes at three postnatal ages: 6 days postnatal, 4 weeks old, and 10 weeks old, representing infant (PN1), juvenile (PN2), and adult (PN3) stages, respectively. Using ultra high-throughput RNA sequencing (RNA-seq) technology, we obtained 211 million reads with a length of 35 bp. We identified 18837 genes that were expressed in mouse testes, and found that genes expressed at the highest level were involved in spermatogenesis. The gene expression pattern in PN1 was distinct from that in PN2 and PN3, which indicates that spermatogenesis has commenced in PN2. We analyzed a large number of genes related to spermatogenesis and somatic development of the testis, which play important roles at different developmental stages. We also found that the MAPK, Hedgehog, and Wnt signaling pathways were significantly involved at different developmental stages. These findings further our understanding of the molecular mechanisms that regulate testis development. Our study also demonstrates significant advantages of RNA-seq technology for studying transcriptome during development.

Collaboration


Dive into the Peng Cui's collaboration.

Top Co-Authors

Avatar

Songnian Hu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jun Yu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Feng Ding

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Qiang Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chengqi Xin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianing Geng

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Wanfei Liu

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingfang Zhang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Shuhui Song

Beijing Institute of Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge