Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pengjuan Zhang is active.

Publication


Featured researches published by Pengjuan Zhang.


PLOS ONE | 2013

De Novo Assembly of the Sea Cucumber Apostichopus japonicus Hemocytes Transcriptome to Identify miRNA Targets Associated with Skin Ulceration Syndrome

Pengjuan Zhang; Chenghua Li; Lin Zhu; Xiurong Su; Ye Li; Chunhua Jin; Taiwu Li

Background De novo transcriptome sequencing is a robust method of predicting miRNA target genes, especially samples without reference genomes. Differentially expressed miRNAs have been previously identified in hemocytes collected from healthy skin and from skin affected by skin ulceration syndrome (SUS) in Apostichopus japonicus . Target identification for these differentially expressed miRNAs is a major challenge for this non-model organism. Methodology/Principal Findings To thoroughly understand the function of miRNAs, a normalized cDNA library was sequenced with the Illumina Hiseq2000 technology. A total of 91,098,474 clean reads corresponding to 251,148 unigenes, each with an average length of 494bp, were obtained. Blastx analysis against a nonredundant (nr) NCBI protein database revealed that in this set, 52,680 unigenes coded for 3,893 annotated proteins. Two digital gene expression (DGE) libraries from healthy and SUS samples showed that 4,858 of the unigenes were expressed at significantly different levels; 2,163 were significantly up-regulated, while 2,695 were significantly down-regulated. The computational prediction of miRNA targets from these differentially expressed genes identified 732 unigenes as the targets of 57 conserved and 8 putative novel miRNA families, including spu-miRNA-31 and spu-miRNA-2008. Conclusion This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The DGE assembly data represent a substantial increase in the genomic resources available for this species and will provide insights into the gene expression profile analysis and the miRNAs function annotations of further studies.


PLOS ONE | 2014

iTRAQ-based proteomics reveals novel members involved in pathogen challenge in sea cucumber Apostichopus japonicus.

Pengjuan Zhang; Chenghua Li; Peng Zhang; Chunhua Jin; Daodong Pan; Yongbo Bao

Skin ulceration syndrome (SUS) is considered to be a major constraint for the stable development of Apostichopus japonicus culture industries. In this study, we investigated protein changes in the coelomocytes of A. japonicus challenged by Vibrio splendidus using isobaric tags for relative and absolute quantification (iTRAQ) over a 96 h time course. Consequently, 228 differentially expressed proteins were identified in two iTRAQs. A comparison of the protein expression profiles among different time points detected 125 proteins primarily involved in response to endogenous stimuli at 24 h. At 48 h, the number of differentially expressed proteins decreased to 67, with their primary function being oxidation reduction. At the end of pathogen infection, proteins responsive to amino acid stimuli and some metabolic processes were classified as the predominant group. Fifteen proteins were differentially expressed at all time points, among which eight proteins related to pathologies in higher animals were shown to be down-regulated after V. splendidus infection: paxillin, fascin-2, aggrecan, ololfactomedin-1, nesprin-3, a disintegrin-like and metallopeptidase with thrombospondin type 1 motif (Adamts7), C-type lectin domain family 4 (Clec4g) and n-myc downstream regulated gene 1 (Ndrg1). To gain more insight into two SUS-related miRNA (miR-31 and miR-2008) targets at the protein level, all 129 down-regulated proteins were further analyzed in combination with RNA-seq. Twelve and eight proteins were identified as putative targets for miR-31 and miR-2008, respectively, in which six proteins (5 for miR-31 and 1 for miR-2008) displayed higher possibilities to be regulated at the level of translation. Overall, the present work enhances our understanding of the process of V. splendidus-challenged sea cucumber and provides a new method for screening miRNAs targets at the translation level.


Fish & Shellfish Immunology | 2014

Identification and characterization of miR-92a and its targets modulating Vibrio splendidus challenged Apostichopus japonicus.

Pengjuan Zhang; Chenghua Li; Yina Shao; Xiaochong Chen; Ye Li; Xiurong Su; Taiwu Li

miR-92a is a kind of disease related fine-tuning regulator which is not only related with tumorigenesis and tumor development but also participates in host-pathogen interaction in vertebrates. In present study, the potential targets of miR-92a in Apostichopus japonicus coelomocytes were screened by high-throughout sequencing and PCR approaches. Total of 10 annotated candidates were identified by hybrid PCR, and 23 were verified from RNA-seq, in which SMURF, PCBP and MEGF were found in both methods. The expression patterns of miR-92a and some putative targets were further characterized by qPCR at cell and individual levels. Vibrio splendidus and LPS exposure could significantly increase the expression level of sea cucumber miR-92a at all examined time points. Accordingly, strictly negative correlation expression profiles were detected in two candidates genes of MEGF and SMURF, suggesting that these two genes showed higher possibilities to be the targets of miR-92a in sea cucumber. Overall, the present work will enhance our understanding in the context of miR-92a modulating the interaction of sea cucumber upon pathogen challenged.


Developmental and Comparative Immunology | 2015

Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production.

Yina Shao; Chenghua Li; Zhongjie Che; Pengjuan Zhang; Weiwei Zhang; Xuemei Duan; Ye Li

Lipopolysaccharide-binding protein and bactericidal permeability-increasing protein (LBP/BPI) play crucial role in modulating cellular signals in response to Gram-negative bacteria infection. In the present study, two isoforms of LBP/BPI genes (designated as AjLBP/BPI1 and AjLBP/BPI2, respectively) were cloned from the sea cucumber Apostichopus japonicus by RACE approach. The full-length cDNAs of AjLBP/BPI1 and AjLBP/BPI2 were of 1479 and 1455 bp and encoded two secreted proteins of 492 and 484 amino acid residues, respectively. Signal peptide, two BPI/LBP/CETP and one central domain were totally conserved in the deduced amino acid of AjLBP/BPI1 and AjLBP/BPI2. Phylogentic analysis further supported that AjLBP/BPI1 and AjLBP/BPI2 belonged to new members of invertebrates LBP/BPI family. Spatial expression analysis revealed that both AjLBP/BPI1 and AjLBP/BPI2 were ubiquitously expressed in all examined tissues with the larger magnitude in AjLBP/BPI1. The Vibrio splenfidus challenge and LPS stimulation could significantly up-regulate the mRNA expression of both AjLBP/BPI1 and AjLBP/BPI2, with the increase of AjLBP/BPI2 expression occurred earlier than that of AjLBP/BPI1. More importantly, we found that LPS induced ROS production was markedly depressed after AjLBP/BPI1 knock-down, but there was no significant change by AjLBP/BPI2 silencing. Consistently, the expression level of unclassified AjToll, not AjTLR3, was tightly correlated with that of AjLBP/BPI1. Silencing the AjToll also depressed the ROS production in the cultured coelomocytes. All these results indicated that AjLBP/BPI1 and AjLBP/BPI2 probably played distinct roles in bacterial mediating immune response in sea cucumber, and AjLBP/BPI1 depressed coelomocytes ROS production via modulating AjToll cascade.


Fish & Shellfish Immunology | 2015

MiR-31 modulates coelomocytes ROS production via targeting p105 in Vibrio splendidus challenged sea cucumber Apostichopus japonicus in vitro and in vivo.

Meng Lu; Pengjuan Zhang; Chenghua Li; Weiwei Zhang; Chunhua Jin; Qingxi Han

MiR-31 is a critical regulator of gene expression in many pathogenic processes in vertebrates. In this study, we identified p105 as a novel target of miR-31 in Apostichopus japonicus and investigated their regulatory roles in vitro and in vivo. The negative expression profiles between miR-31 and Ajp105 were detected in both LPS-exposed primary coelomocytes and Vibrio splendidus-challenged sea cucumber. Co-infection miR-31 mimics significantly depressed the expression of Ajp105 and increased ROS production in vitro. In contrast, miR-31 inhibitor significantly elevated the expression of Ajp105 and decreased ROS level. Consistently, miR-31 over-expression or Ajp105 silencing in vivo both greatly promoted ROS accumulation. Taken together, our findings confirmed that miR-31 could modulate respiratory burst via targeting Ajp105 during sea cucumber pathological development.


Genetics | 2015

The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber.

Pengjuan Zhang; Chenghua Li; Ran Zhang; Weiwei Zhang; Chunhua Jin; Lingling Wang; Linsheng Song

MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine–homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production and the clearance of pathogenic microorganisms through Hcy accumulation.


Developmental and Comparative Immunology | 2014

Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection

Peng Zhang; Chenghua Li; Ye Li; Pengjuan Zhang; Yina Shao; Chunhua Jin; Taiwu Li

Skin ulceration syndrome (SUS) was the main limitation in the development of Apostichopus japonicus culture industries. To better understand how Vibrio splendidus modulates SUS outbreak, the immune response of A. japonicus coelomocytes after the pathogen challenge were investigated through comparative proteomics approach, and differentially expressed proteins were screened and characterized in the present study. A total of 40 protein spots representing 30 entries were identified at 24, 72 and 96 h post-infection. Of these proteins, 32 were up-regulated and 8 were down-regulated in the V. splendidus challenged samples compared to those of control. These differentially expressed proteins were mainly classified into four categories by GO analysis, in which approximate 33% of proteins showed to be related to immunity response. The mRNA expression levels of 6 differentially expressed proteins were further validated by qRT-PCR. Similar protein-mRNA-level expression patterns were detected in genes of phospholipase (spot 4), G protein (spot 20), annexin (spot 30) and filamin (spot 31). Whilst the levels of ficolin (spot 12) and calumenin (spot 14) transcripts were not corresponded with those of their translation products. These data provide a new insight to understand the molecular immune mechanism of sea cucumber responsive towards pathogen infection.


Scientific Reports | 2015

miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo

Meng S Lu; Pengjuan Zhang; Chenghua Li; Zhimeng Lv; Weiwei Zhang; Chunhua Jin

In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.


Fish & Shellfish Immunology | 2015

miR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus

Zhimeng Lv; Chenghua Li; Pengjuan Zhang; Zhenhui Wang; Weiwei Zhang; Chunhua Jin

In order to explore the potential roles of microRNAs (miRNAs) in regulating Toll-like receptor (TLR) pathways, we identified Toll interacting protein as a putative target of miR-200 in Apostichopus japonicus coelomocytes by RNA-seq screening (denoted as AjTollip). The positive expression profiles of miR-200 and AjTollip were detected in both LPS exposure primary coelomocytes and Vibrio splendidus challenge sea cucumber. Co-infection miR-200 mimics significantly elevated the expression of AjTollip and its down-stream molecules. In contrast, miR-200 inhibitor significantly repressed the expression of these TLR-pathway members. More importantly, miR-200 displayed not only to enhance coelomocytes antibacterial activities, but to suppress LPS priming in vitro. Overall, all these results will enhance our understanding on miR-200 regulatory roles in anti-bacterial process in sea cucumber.


Frontiers in Immunology | 2017

miR-31 Links Lipid Metabolism and Cell Apoptosis in Bacteria-Challenged Apostichopus japonicus via Targeting CTRP9

Yina Shao; Chenghua Li; Wei Xu; Pengjuan Zhang; Weiwei Zhang; Xuelin Zhao

The biological functions of microRNAs (miRNAs) have been studied in a number of eukaryotic species. Recent studies on vertebrate animals have demonstrated critical roles of miRNA in immune and metabolic activities. However, studies on the functions of miRNA in invertebrates are very limited. Here, we demonstrated that miR-31 from Apostichopus japonicus disrupts the balance of lipid metabolism, thus resulting in cell apoptosis by targeting complement C1q tumor necrosis factor-related protein 9 (AjCTRP9), a novel adipokine with pleiotropic functions in immunity and metabolism. Lipidomic analysis suggested that the intercellular lipid metabolites were markedly altered, and three ceramide (Cer) species synchronously increased in the AjCTRP9-silenced coelomocytes. Moreover, exogenous Cer exposure significantly induced apoptosis in the coelomocytes in vivo, in agreement with findings from miR-31 mimic- or AjCTRP9 small-interfering RNA-transfected coelomocytes. Furthermore, we found that the imbalance in sphingolipid metabolism triggered by the overproduction of Cers ultimately resulted in the activation of the apoptosis initiator caspase-8 and executioner caspase-3. Our findings provide the first direct evidence that miR-31 negatively modulates the expression of AjCTRP9 and disturbance of Cer channels, thus leading to caspase-3- and caspase-8-dependent apoptosis, during the interactions between pathogens and host.

Collaboration


Dive into the Pengjuan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge