Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pengkang Jin is active.

Publication


Featured researches published by Pengkang Jin.


Environment International | 2016

Current status of urban wastewater treatment plants in China.

Q.H. Zhang; W.N. Yang; Huu Hao Ngo; Wenshan Guo; Pengkang Jin; Mawuli Dzakpasu; Shengjiong Yang; Qian Wang; Xiaochang C. Wang; Dong Ao

The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between Chinas east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided.


Water Research | 2013

Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

Chang-Zi Guo; Wei Fu; Xue-Mei Chen; Dang-Cong Peng; Pengkang Jin

Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.


Chemosphere | 2013

An analysis of the chemical safety of secondary effluent for reuse purposes and the requirement for advanced treatment.

Pengkang Jin; Xin Jin; Xiaochang C. Wang; Xinbin Shi

This paper presents a study on the chemical safety of the secondary effluent for reuse purposes and the requirement of advanced treatment. Water quality analysis was conducted regarding conventional chemical items, hazardous metals, trace organics and endocrine disrupting chemicals (EDCs). Generally speaking, the turbidity, COD, BOD, TN and TP of the secondary effluent can meet the Chinese standards for urban miscellaneous water reuse but higher colour is a problem. Further removal of BOD and TP may still be required if the water is reused for landscape and environmental purposes especially relating to recreation. In addition, Hazardous metals, trace organics and endocrine disrupting chemicals (EDCs) are not the main problems for water reuse. At the same time, several tertiary treatment processes were evaluated. The coagulation-filtration process is effective process for further improvement of the conventional water quality items and removal of hazardous metals but less effective in dealing with dissolved organic matter. The ultrafiltration (UF) can achieve almost complete removal of turbid matter while its ability to remove dissolved substances is limited. The ozone-biofiltration is the most effective for colour and organic removal but it can hardly remove the residual hazardous metals. Therefore, the selection of suitable process for different water quality is important for water use.


Archive | 2013

Biological Activated Carbon Treatment Process for Advanced Water and Wastewater Treatment

Pengkang Jin; Xin Jin; Xianbao Wang; Yongning Feng; Xiaochang C. Wang

The development of biological activated carbon (BAC) technology is on the basis of activated carbon technology development. Activated carbon which is used as a kind of absorption medium plays an important role in perfecting the conventional treatment process. Furthermore, activated carbon technology becomes one of the most mature and effective processes to remove organic contaminants in water. Removal of the odor in raw water can be regarded as the first attempt of activated carbon which can play a part in water treatment. The first water treatment plant in which granular activated carbon adsorption tank used was built in 1930 in Philadelphia, United States[1]. In the 1960-1970s, developed western countries started to use activated carbon technology in potable water treatment to enhance the removal of organic contaminants. By then, prechlorination was commonly used as the first step of activated carbon treatment. As the inflow of carbon layer contained free chlorine, the growth of microorganism was inhibited and no obvious biological activity showed in the carbon layer.


Bioresource Technology | 2015

A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

Pengkang Jin; Xiao Chang Wang; Huu Hao Ngo; Xin Jin

Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.


Water Science and Technology | 2017

Phosphorus removal from aqueous solution using a novel granular material developed from building waste

Shengjiong Yang; Pengkang Jin; Xiaochang C. Wang; Qionghua Zhang; Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g-1 and a liberation capacity of 6.79 ± 0.77 mg g-1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


Journal of Hazardous Materials | 2017

Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

Xin Jin; Pengkang Jin; Rui Hou; Lei Yang; Xiaochang C. Wang

A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1mgO3/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O3-resistant hydroxyl radical (OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of OH compared with pre-ozonation process. This indicates that the OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.


Bioresource Technology | 2016

A new activated primary tank developed for recovering carbon source and its application

Pengkang Jin; Xianbao Wang; Qionghua Zhang; Xiaochang Wang; Huu Hao Ngo; Lei Yang

A novel activated primary tank process (APT) was developed for recovering carbon source by fermentation and elutriation of primary sludge. The effects of solids retention time (SRT), elutriation intensity (G) and return sludge ratio (RSR) on this recovery were evaluated in a pilot scale reactor. Results indicated that SRT significantly influenced carbon source recovery, and mechanical elutriation could promote soluble COD (SCOD) and VFA yields. The optimal conditions of APT were SRT=5d, G=152s(-1) and RSR=10%, SCOD and VFA production were 57.0mg/L and 21.7mg/L. Particulate organic matter in sludge was converted into SCOD and VFAs as fermentative bacteria were significantly enriched in APT. Moreover, the APT process was applied in a wastewater treatment plant to solve the problem of insufficient carbon source. The outcomes demonstrated that influent SCOD of biological tank increased by 31.1%, which improved the efficiency of removing nitrogen and phosphorus.


Environmental Science & Technology | 2018

Co-Variation between Distribution of Microbial Communities and Biological Metabolization of Organics in Urban Sewer Systems

Pengkang Jin; Xuan Shi; Guangxi Sun; Lei Yang; Yixiao Cai; Xiaochang C. Wang

Distribution characteristics and biodiversity of microbial communities were studied in a 1200 m pilot sewer system. Results showed that the dominant microorganisms, fermentation bacteria (FB), hydrogen-producing acetogen (HPA), sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) changed significantly along the sewer systems, from start to the end. The distribution of the functional microorganisms could induce substrate transformation and lead to the accumulation of micromolecular organics (i.e., acetic acid, propionic acid and amino acid). However, substrate transformation induced by these microbes was affected by environmental factors such as oxidation-reduction potential, pH and dissolved oxygen. Changes in environmental conditions along the sewer resulted in the variation of dominant bioreactions. FB were enriched at the beginning of the sewer, while SRB and MA were found toward the end. Furthermore, based on Spearman rank correlation analysis of microbial communities, environmental factors and substrates, covariation between microbial community distribution and organics metabolization along the sewer was identified. This study could provide a theoretical foundation for understanding wastewater quality variation during transportation from sewers to treatment plants, therefore, promoting optimization of design and operation of wastewater treatment.


Bioresource Technology | 2018

A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study

Rui Wang; Xin Jin; Ziyuan Wang; Wantao Gu; Zhechao Wei; Yuanjie Huang; Zhuang Qiu; Pengkang Jin

This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation.

Collaboration


Dive into the Pengkang Jin's collaboration.

Top Co-Authors

Avatar

Xiaochang C. Wang

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaochang Wang

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Xin Jin

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Shengjiong Yang

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Qionghua Zhang

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xianbao Wang

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Xuan Shi

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Jina Song

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar

Kun Wu

Xi'an University of Architecture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge