Xiaochang C. Wang
Xi'an University of Architecture and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaochang C. Wang.
Science of The Total Environment | 2014
Yunlong Luo; Wenshan Guo; Huu Hao Ngo; Long D. Nghiem; Faisal I. Hai; Jian Zhang; Shuang Liang; Xiaochang C. Wang
Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors can achieve higher and more consistent micropollutant removal. However, regardless of what technology is employed, the removal of micropollutants depends on physico-chemical properties of micropollutants and treatment conditions. The evaluation of micropollutant removal from municipal wastewater should cover a series of aspects from sources to end uses. After the release of micropollutants, a better understanding and modeling of their fate in surface water is essential for effectively predicting their impacts on the receiving environment.
Environment International | 2016
Q.H. Zhang; W.N. Yang; Huu Hao Ngo; Wenshan Guo; Pengkang Jin; Mawuli Dzakpasu; Shengjiong Yang; Qian Wang; Xiaochang C. Wang; Dong Ao
The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between Chinas east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided.
Science of The Total Environment | 2014
Xiaoyan Y. Ma; Xiaochang C. Wang; Huu Hao Ngo; Wenshan Guo; Maoni N. Wu; Na Wang
Due to the merits of being time-saving, cost effective and simple operation, the luminescent bacteria toxicity assay (LBTA) has been widely used for environmental pollution monitoring. Based on numerous studies since 2007, this critical review aims to give an overview on the mechanisms, developments and applications of LBTA. Firstly, based on the introduction of the mechanisms of LBTA, this review shows the interferences from the characteristics of testing samples (such as inorganic nutrients, color, turbidity) and summarizes the improvements on pretreatment method, test methods and test systems in recent years. Regarding the factors that affect the toxicity prediction of single chemicals, the correlation between the toxicity index expressed as median effective concentration (EC50) and characters (such as Kow, the alkyl chain length, the anion and the cation) of known chemicals, especially the emerging ionic liquids (ILs), were given an in-depth discussion. The models for predicting the joint effect of mixtures to luminescent bacteria were also presented. For the factors that affect the toxicity of actual waters, the correlation of toxicity of actual samples to luminescent bacteria and their conventional indexes were discussed. Comparing the sensitivity of the LBTA with other bioassays could indicate the feasibility of the LBTA applied on specific samples. The summary on the application of LBTA to environmental samples has been made to find the future research direction.
Bioresource Technology | 2013
Zhaoqian Jing; Yong Hu; Qigui Niu; Yuyu Liu; Yu-You Li; Xiaochang C. Wang
To find an appropriate method for sulfate-rich wastewater containing ethanol and acetate with COD/sulfate ratio of 1, a UASB reactor was operated for more than 180 days. The influences of HRT (hydraulic retention time) and OLR (organic loading rate) on organics and sulfate removal, gas production, and electrons utilization were investigated. The sludge activity and microorganism composition were also determined. The results indicated that this system removed more than 80% of COD and 30% of sulfate with HRT above 6h and OLR below 12.3 gCOD/L d. Further HRT decrease caused volatile fatty acids accumulation and performance deterioration. Except at HRT of 2h, COD and electron flow were mostly utilized by methane-producing archaea (MPA), and methane yield remained in the range of 0.18-0.24 LCH4/gCOD. Methane was mainly generated by Methanosaeta concilii GP6 with acetate as substrate, whereas sulfate was mainly reduced by incomplete-oxidizing Desulfovibrio species with ethanol as substrate.
Chemosphere | 2016
Yongmei Zhang; Xiaochang C. Wang; Zhe Cheng; Yu-You Li; Jialing Tang
Food wastes were used for anaerobic fermentation to prepare carbon sources for enhancing nitrogen removal in wastewater treatment. Under anaerobic conditions without pH adjustment, the fermentation liquid from food wastes (FLFW) with a high organic acid content was produced at room temperature (25 °C) and initial solid concentration of 13%. Using FLFW as the sole carbon source of artificial wastewater for biological treatment by sequence batch operation, maximized denitrification (with a denitrification rate of V(DN) = 12.89 mg/gVSS h and a denitrification potential of P(DN) = 0.174 gN/gCOD) could be achieved at a COD/TN ratio of 6. The readily biodegradable fraction in the FLFW was evaluated as 58.35%. By comparing FLFW with glucose and sodium acetate, two commonly used chemical carbon sources, FLFW showed a denitrification result similar to sodium acetate but much better than glucose in terms of total nitrogen removal, V(DN), P(DN), organic matter consumption rate (V(COD)) and heterotrophy anoxic yield coefficient (Y(H)).
Bioresource Technology | 2015
Atefeh Abdolali; Huu Hao Ngo; Wenshan Guo; John L. Zhou; Bin Du; Qin Wei; Xiaochang C. Wang; Phuoc Dan Nguyen
This work attends to preparation and characterization of a novel multi-metal binding biosorbent after chemical modification and desorption studies. Biomass is a combination of tea waste, maple leaves and mandarin peels with a certain proportion to adsorb cadmium, copper, lead and zinc ions from aqueous solutions. The mechanism involved in metal removal was investigated by SEM, SEM/EDS and FTIR. SEM/EDS showed the presence of different chemicals and adsorbed heavy metal ions on the surface of biosorbent. FTIR of both unmodified and modified biosorbents revealed the important role of carboxylate groups in heavy metal biosorption. Desorption using different eluents and 0.1 M HCl showed the best desorption performance. The effectiveness of regeneration step by 1 M CaCl2 on five successive cycles of sorption and desorption displays this multi-metal binding biosorbent (MMBB) can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions in five cycles of sorption/desorption/regeneration.
Science of The Total Environment | 2015
Tingting Gao; Xiaochang C. Wang; Rong Chen; Huu Hao Ngo; Wenshan Guo
Disability adjusted life year (DALY) has been widely used since 1990s for evaluating global and/or regional burden of diseases. As many environmental pollutants are hazardous to human health, DALY is also recognized as an indicator to quantify the health impact of environmental pollution related to disease burden. Based on literature reviews, this article aims to give an overview of the applicable methodologies and research directions for using DALY as a tool for quantitative assessment of environmental pollution. With an introduction of the methodological framework of DALY, the requirements on data collection and manipulation for quantifying disease burdens are summarized. Regarding environmental pollutants hazardous to human beings, health effect/risk evaluation is indispensable for transforming pollution data into disease data through exposure and dose-response analyses which need careful selection of models and determination of parameters. Following the methodological discussions, real cases are analyzed with attention paid to chemical pollutants and pathogens usually encountered in environmental pollution. It can be seen from existing studies that DALY is advantageous over conventional environmental impact assessment for quantification and comparison of the risks resulted from environmental pollution. However, further studies are still required to standardize the methods of health effect evaluation regarding varied pollutants under varied circumstances before DALY calculation.
Journal of Hazardous Materials | 2011
Xiaoyan Y. Ma; Xiaochang C. Wang; Yongjun J. Liu
A bioassay using the luminescent bacterium Vibrio-qinghaiensis sp.-Q67 associated with solid-phase extraction (SPE) was developed for evaluating the variation of ecotoxicity along with the reduction of organic substances in a domestic wastewater treatment plant employing an oxidation ditch process. With effective elimination of the interference from all inorganic substances by the SPE operation, the ecotoxicity of the water, as expressed by the toxicity impact index, TII(50) (%) after a model-based regression and parameter transformation, was found to decrease from 50.51% in the influent to 25.84% after the grid chamber and then to 1.38% for the secondary effluent, but the final chlorination stage resulted in a slight TII(50) increase. Of the two typical tertiary treatment processes, coagulation could not assist further reduction of the ecotoxicity while carbon adsorption could reduce the TII(50) to as low as 0.96%. When enhanced primary treatment was conducted, the influent TII(50) could be directly reduced to 7.36%. A good correlative relationship was found between the total COD concentration and the TII(50) value at different stages of the wastewater treatment process.
Bioresource Technology | 2016
Lijuan Deng; Wenshan Guo; Huu Hao Ngo; Xinbo Zhang; Xiaochang C. Wang; Qionghua Zhang; Rong Chen
In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit.
Bioresource Technology | 2013
Qian Li; Xiaochang C. Wang; Haihan Zhang; H.L. Shi; T. Hu; Huu Hao Ngo
Batch experiments were conducted for feces composting using an aerobic composting reactor with sawdust as bulky matrix. In the 14-day composting processes at 35±2 and 55±2°C, compost samples were collected daily and chemical analyses and PCR-DGGE were carried out for investigating the influence of composting temperature on organic decomposition, nitrogen transformation, and microbial communities. At 55±2°C, in addition to a slightly higher COD removal, nitrogen loss was greatly restrained. As organic nitrogen took about 85% of the total nitrogen originated from human feces, the suppression of ammonification process under thermophilic environment might be the main reason for less nitrogen loss at 55±2°C. By PCR-DGGE analysis, the microbial community was found to undergo successions differently at 35±2 and 55±2°C. Certain sequences identified from the compost at 55±2°C represented the microbial species which could perform nitrogen-fixation or sustain a lower pH in the compost so that gaseous ammonia emission was suppressed.