Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny A. Rudd is active.

Publication


Featured researches published by Penny A. Rudd.


Virology | 2008

Severe seasonal influenza in ferrets correlates with reduced interferon and increased IL-6 induction.

Nicholas Svitek; Penny A. Rudd; Karola Obojes; Stéphane Pillet; Veronika von Messling

Even though ferrets are one of the principal animal models for influenza pathogenesis, the lack of suitable immunological reagents has so far limited their use in host response studies. Using recently established real-time PCR assays for a panel of ferret cytokines, we analyzed the local ferret immune response to human influenza isolates of the H1N1 and H3N2 subtypes that varied in their virulence. We observed that the severity of clinical signs correlated with gross- and histopathological changes in the lungs and was subtype-independent. Strains causing a mild disease were associated with a strong and rapid innate response and upregulation of IL-8, while severe infections were characterized by a lesser induction of type I and II interferons and strong IL-6 upregulation. These findings suggest that more virulent strains may interfere more efficiently with the host response at early disease stages.


Journal of Virology | 2012

Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

Penny A. Rudd; Jane A. C. Wilson; Joy Gardner; Thibaut Larcher; Candice Babarit; Thuy Le; Itaru Anraku; Yutaro Kumagai; Yueh Ming Loo; Michael Gale; Shizuo Akira; Alexander A. Khromykh; Andreas Suhrbier

ABSTRACT Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome.


PLOS Neglected Tropical Diseases | 2014

Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection

Yee Suan Poo; Penny A. Rudd; Joy Gardner; Jane A. C. Wilson; Thibaut Larcher; Marie-Anne Colle; Thuy Le; Helder I. Nakaya; David Warrilow; Richard Allcock; Helle Bielefeldt-Ohmann; Wayne A. Schroder; Alexander A. Khromykh; José A. Lopez; Andreas Suhrbier

The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA.


Lancet Infectious Diseases | 2017

Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen

Felicity J. Burt; Weiqiang Chen; Jonathan J. Miner; Deborah J. Lenschow; Andres Merits; Esther Schnettler; Alain Kohl; Penny A. Rudd; Adam Taylor; Lara J. Herrero; Ali Zaid; Lisa F. P. Ng; Suresh Mahalingam

Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines.


Journal of Virology | 2012

Membrane fusion-mediated autophagy induction enhances morbillivirus cell-to-cell spread.

Sebastien Delpeut; Penny A. Rudd; Patrick Labonté; Veronika von Messling

ABSTRACT In the context of viral infections, autophagy induction can be beneficial or inhibitory. Within the Paramyxoviridae family, only morbilliviruses have been investigated and are reported to induce autophagy. Here we show that morbilliviruses rapidly induce autophagy and require this induction for efficient cell-to-cell spread. Coexpression of both glycoproteins in cells expressing one of the cellular receptors was required for autophagy induction, and LC3 punctum formation, indicative of autophagy, was mainly observed in syncytia. A similar correlation between syncytium formation and autophagy induction was also observed for other paramyxovirus glycoproteins, suggesting that membrane fusion-mediated autophagy may be common among paramyxoviruses and possibly other enveloped viruses.


Journal of General Virology | 2010

Acute canine distemper encephalitis is associated with rapid neuronal loss and local immune activation.

Penny A. Rudd; Louis-Étienne Bastien-Hamel; Veronika von Messling

For most virus infections of the central nervous system (CNS), immune-mediated damage, the route of inoculation and death of infected cells all contribute to the pathology observed. To investigate the role of these factors in early canine distemper neuropathogenesis, we infected ferrets either intranasally or intraperitoneally with the neurovirulent canine distemper virus strain Snyder Hill. Regardless of the route of inoculation, the virus primarily targeted the olfactory bulb, brainstem, hippocampus and cerebellum, whereas only occasional foci were detected in the cortex. The infection led to widespread neuronal loss, which correlated with the clinical signs observed. Increased numbers of activated microglia, reactive gliosis and different pro-inflammatory cytokines were detected in the infected areas, suggesting that the presence and ultimate death of infected cells at early times after infection trigger strong local immune activation, despite the observed systemic immunosuppression.


Journal of Virology | 2007

Disease Duration Determines Canine Distemper Virus Neurovirulence

François Bonami; Penny A. Rudd; Veronika von Messling

ABSTRACT The Morbillivirus hemagglutinin (H) protein mediates attachment to the target cell. To evaluate its contribution to canine distemper virus neurovirulence, we exchanged the H proteins of the wild-type strains 5804P and A75 and assessed the pathogenesis of the chimeric viruses in ferrets. Both strains are lethal to ferrets; however, 5804P causes a 2-week disease without neurological signs, whereas A75 is associated with a longer disease course and neurological involvement. We observed that both H proteins supported neuroinvasion and the subsequent development of clinical neurological signs if given enough time, demonstrating that disease duration is the main neurovirulence determinant.


PLOS ONE | 2015

Infectious chikungunya virus in the saliva of mice, monkeys and humans

Joy Gardner; Penny A. Rudd; Natalie A. Prow; Essia Belarbi; Pierre Roques; Thibaut Larcher; Lionel Gresh; Angel Balmaseda; Eva Harris; Wayne A. Schroder; Andreas Suhrbier

Chikungunya virus (CHIKV) is a reemerging, ordinarily mosquito-transmitted, alphavirus that occasionally produces hemorrhagic manifestations, such as nose bleed and bleeding gums, in human patients. Interferon response factor 3 and 7 deficient (IRF3/7-/-) mice, which are deficient for interferon α/β responses, reliably develop hemorrhagic manifestations after CHIKV infection. Here we show that infectious virus was present in the oral cavity of CHIKV infected IRF3/7-/- mice, likely due to hemorrhagic lesions in the olfactory epithelium that allow egress of infected blood into the nasal, and subsequently, oral cavities. In addition, IRF3/7-/- mice were more susceptible to infection with CHIKV via intranasal and oral routes, with IRF3/7-/- mice also able to transmit virus mouse-to-mouse without an arthropod vector. Cynomolgus macaques often show bleeding gums after CHIKV infection, and analysis of saliva from several infected monkeys also revealed the presence of viral RNA and infectious virus. Furthermore, saliva samples collected from several acute CHIKV patients with hemorrhagic manifestations were found to contain viral RNA and infectious virus. Oral fluids can therefore be infectious during acute CHIKV infections, likely due to hemorrhagic manifestations in the oral/nasal cavities.


Vaccine | 2015

Effective cutaneous vaccination using an inactivated chikungunya virus vaccine delivered by Foroderm.

Penny A. Rudd; Anthony P. Raphael; Miko Yamada; Kaitlin L. Nufer; Joy Gardner; Thuy Le; Natalie A. Prow; Nhung Dang; Wayne A. Schroder; Tarl W. Prow; Andreas Suhrbier

Foroderm is a new cutaneous delivery technology that uses high-aspect ratio, cylindrical silica microparticles, that are massaged into the skin using a 3D-printed microtextured applicator, in order to deliver payloads across the epidermis. Herein we show that this technology is effective for delivery of a non-adjuvanted, inactivated, whole-virus chikungunya virus vaccine in mice, with minimal post-vaccination skin reactions. A single topical Foroderm-based vaccination induced T cell, Th1 cytokine and antibody responses, which provided complete protection against viraemia and disease after challenge with chikungunya virus. Foroderm vaccination was shown to deliver fluorescent, virus-sized beads across the epidermis, with beads subsequently detected in draining lymph nodes. Foroderm vaccination also stimulated the egress of MHC II(+) antigen presenting cells from the skin. Foroderm thus has potential as a simple, cheap, effective, generic, needle-free technology for topical delivery of vaccines.


Journal of Virology | 2015

Dual Proinflammatory and Antiviral Properties of Pulmonary Eosinophils in Respiratory Syncytial Virus Vaccine-Enhanced Disease

Yung Chang Su; Dijana Townsend; Lara J. Herrero; Ali Zaid; Michael S. Rolph; Michelle E. Gahan; Michelle Nelson; Penny A. Rudd; Klaus I. Matthaei; Paul S. Foster; Lindsay A. Dent; Ralph A. Tripp; James J. Lee; Ljubov Simson; Suresh Mahalingam

ABSTRACT Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.

Collaboration


Dive into the Penny A. Rudd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Suhrbier

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy Gardner

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Zaid

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsten Spann

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge