Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny Andrews is active.

Publication


Featured researches published by Penny Andrews.


Shock | 2013

Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury.

Shreyas Roy; Nader Habashi; Benjamin Sadowitz; Penny Andrews; Lin Ge; Guirong Wang; Preyas Roy; Auyon Ghosh; Michael Kuhn; Joshua Satalin; Louis A. Gatto; Xin Lin; David A. Dean; Yoram Vodovotz; Gary F. Nieman

ABSTRACT Acute respiratory distress syndrome (ARDS) afflicts 200,000 patients annually with a mortality rate of 30% to 60% despite wide use of low tidal volume (LTV) ventilation, the present standard of care. High-permeability alveolar edema and instability occur early in the development of ARDS, before clinical signs of lung injury, and represent potential targets for therapy. We hypothesize that early application of a protective ventilation strategy (airway pressure release ventilation [APRV]) will stabilize alveoli and reduce alveolar edema, preventing the development of ARDS. Yorkshire pigs (30–40 kg) were anesthetized and subjected to two-hit injury: (a) intestinal ischemia-reperfusion, (b) peritoneal sepsis, or sham surgery. Following surgery, pigs were randomized into APRV (n = 4), according to current published guidelines for APRV; LTV ventilation (n = 3), using the current published ARDS Network guidelines (6 mL/kg); or sham (n = 5). The clinical care of all pigs was administered per the Surviving Sepsis Campaign guidelines. Animals were killed, and necropsy performed at 48 h. Arterial blood gases were measured to assess for the development of clinical lung injury. Lung tissue epithelial cadherin (E-cadherin) was measured to assess alveolar permeability. Bronchoalveolar lavage fluid (BALF) surfactant protein A was measured to assess alveolar stability. Lung edema content and histopathology were analyzed at 48 h. Airway pressure release ventilation pigs did not develop ARDS. In contrast, pigs in the LTV ventilation met ARDS criteria (PaO2/FIO2 ratio) (APRV: baseline = 471 ± 16; 48 h = 392 ± 8; vs. LTV ventilation: baseline = 551 ± 28; 48 h = 138 ± 88; P < 0.001). Airway pressure release ventilation preserved alveolar epithelial integrity demonstrated by higher levels of E-cadherin in lung tissue as compared with LTV ventilation (P < 0.05). Surfactant protein A levels were higher in BALF from the APRV group, suggesting APRV preserved alveolar stability. Quantitative histologic scoring showed improvements in all stigmata of ARDS in the APRV group versus the LTV ventilation (P < 0.05). Airway pressure release ventilation had significantly lower lung edema (wet-dry weight) than LTV ventilation (P < 0.05). Protective ventilation with APRV immediately following injury prevents development of ARDS. Reduction in lung edema, preservation of lung E-cadherin, and surfactant protein A abundance in BALF suggest that APRV attenuates lung permeability, edema, and surfactant degradation. Protective ventilation could change the clinical paradigm from supportive care for ARDS with LTV ventilation to preventing development of ARDS with APRV.


Journal of Trauma-injury Infection and Critical Care | 2012

Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: A novel timing-based ventilatory intervention to avert lung injury

Shreyas Roy; Benjamin Sadowitz; Penny Andrews; Louis A. Gatto; William Marx; Lin Ge; Guirong Wang; Xin Lin; David A. Dean; Michael Kuhn; Auyon Ghosh; Joshua Satalin; Kathy Snyder; Yoram Vodovotz; Gary F. Nieman; Nader Habashi

BACKGROUND Established acute respiratory distress syndrome (ARDS) is often refractory to treatment. Clinical trials have demonstrated modest treatment effects, and mortality remains high. Ventilator strategies must be developed to prevent ARDS. HYPOTHESIS Early ventilatory intervention will block progression to ARDS if the ventilator mode (1) maintains alveolar stability and (2) reduces pulmonary edema formation. METHODS Yorkshire pigs (38–45 kg) were anesthetized and subjected to a “two-hit” ischemia-reperfusion and peritoneal sepsis. After injury, animals were randomized into two groups: early preventative ventilation (airway pressure release ventilation [APRV]) versus nonpreventative ventilation (NPV) and followed for 48 hours. All animals received anesthesia, antibiotics, and fluid or vasopressor therapy as per the Surviving Sepsis Campaign. Titrated for optimal alveolar stability were the following ventilation parameters: (1) NPV group—tidal volume, 10 mL/kg + positive end-expiratory pressure − 5 cm/H2O volume-cycled mode; (2) APRV group—tidal volume, 10 to 15 mL/kg; high pressure, low pressure, time duration of inspiration (Thigh), and time duration of release phase (Tlow). Physiological data and plasma were collected throughout the 48-hour study period, followed by BAL and necropsy. RESULTS APRV prevented the development of ARDS (p < 0.001 vs. NPV) by PaO2/FIO2 ratio. Quantitative histological scoring showed that APRV prevented lung tissue injury (p < 0.001 vs. NPV). Bronchoalveolar lavage fluid showed that APRV lowered total protein and interleukin 6 while preserving surfactant proteins A and B (p < 0.05 vs. NPV). APRV significantly lowered lung water (p < 0.001 vs. NPV). Plasma interleukin 6 concentrations were similar between groups. CONCLUSION Early preventative mechanical ventilation with APRV blocked ARDS development, preserved surfactant proteins, and reduced pulmonary inflammation and edema despite systemic inflammation similar to NPV. These data suggest that early preventative ventilation strategies stabilizing alveoli and reducing pulmonary edema can attenuate ARDS after ischemia-reperfusion and sepsis.


Journal of Parenteral and Enteral Nutrition | 2006

Tolerance and Efficacy of Enteral Nutrition in Traumatic Brain–Injured Patients Induced Into Barbiturate Coma

Grant V. Bochicchio; Kelly Bochicchio; Shelley Nehman; Colleen Casey; Penny Andrews; Thomas M. Scalea

BACKGROUND There is a paucity of data evaluating the efficacy of nutrition support in traumatic brain-injured patients induced into barbiturate coma for refractory intracranial hypertension. Our objective was to evaluate the efficacy of enteral nutrition in a select group of trauma patients. METHODS Prospective data were collected on severe traumatic brain-injured patients over a 4-year period. Patients were stratified by whether or not they were induced into a barbiturate coma. Barbiturate coma was defined as per American Association of Neurological Surgeons (AANS) guidelines. All patients were initially fed via the enteral route via a nasogastric feeding tube. Patients who did not tolerate feedings within 48 hours started receiving prokinetic agents. Feeding tolerance was defined as ability to tolerate enteral feedings with <150 mL of gastric residuals every 6 hours for >72 hours. RESULTS Fifty-seven patients were induced into a barbiturate coma. All were victims of blunt-force trauma. Forty-two of 57 (74%) patients were men, with a mean age of 37+/-12 years and a mean injury severity score of 24+/-10. Thirty-eight of the 57 (67%) patients had an isolated traumatic brain injury. All 57 patients failed enteral nutrition via the nasogastric route after the first 48 hours of nutrition initiation after barbiturate coma was fully achieved by protocol criteria. Prokinetic agents demonstrated no improvement in feeding tolerance after the subsequent 48-72 hours. Of the 12 patients who had a postpyloric feeding tube placed, only 25% tolerated enteral nutrition for >48 hours. CONCLUSIONS Patients with traumatic brain injury induced into barbiturate coma develop a significant ileus that is refractory to prokinetic agents. Only a marginal improvement is seen when the postpyloric route is obtained. Early parenteral nutrition should be considered in this patient population.


Journal of Trauma-injury Infection and Critical Care | 2013

Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature.

Penny Andrews; Shiber; Jaruga-Killeen E; Shreyas Roy; Benjamin Sadowitz; O'Toole Rv; Louis A. Gatto; Gary F. Nieman; Thomas M. Scalea; Nader Habashi

BACKGROUND Adult respiratory distress syndrome is often refractory to treatment and develops after entering the health care system. This suggests an opportunity to prevent this syndrome before it develops. The objective of this study was to demonstrate that early application of airway pressure release ventilation in high-risk trauma patients reduces hospital mortality as compared with similarly injured patients on conventional ventilation. METHODS Systematic review of observational data in patients who received conventional ventilation in other trauma centers were compared with patients treated with early airway pressure release ventilation in our trauma center. Relevant studies were identified in a PubMed and MEDLINE search from 1995 to 2012 and included prospective and retrospective observational and cohort studies enrolling 100 or more adult trauma patients with reported adult respiratory distress syndrome incidence and mortality data. RESULTS Early airway pressure release ventilation as compared with the other trauma centers represented lower mean adult respiratory distress syndrome incidence (14.0% vs. 1.3%) and in-hospital mortality (14.1% vs. 3.9%). CONCLUSION These data suggest that early airway pressure release ventilation may prevent progression of acute lung injury in high-risk trauma patients, reducing trauma-related adult respiratory distress syndrome mortality. LEVEL OF EVIDENCE Systematic review, level IV.


JAMA Surgery | 2014

Mechanical Breath Profile of Airway Pressure Release Ventilation: The Effect on Alveolar Recruitment and Microstrain in Acute Lung Injury

Michaela Kollisch-Singule; Bryanna Emr; Bradford J. Smith; Shreyas Roy; Sumeet Jain; Joshua Satalin; Kathy Snyder; Penny Andrews; Nader Habashi; Jason H. T. Bates; William Marx; Gary F. Nieman; Louis A. Gatto

IMPORTANCE Improper mechanical ventilation settings can exacerbate acute lung injury by causing a secondary ventilator-induced lung injury. It is therefore important to establish the mechanism by which the ventilator induces lung injury to develop protective ventilation strategies. It has been postulated that the mechanism of ventilator-induced lung injury is the result of heterogeneous, elevated strain on the pulmonary parenchyma. Acute lung injury has been associated with increases in whole-lung macrostrain, which is correlated with increased pathology. However, the effect of mechanical ventilation on alveolar microstrain remains unknown. OBJECTIVE To examine whether the mechanical breath profile of airway pressure release ventilation (APRV), consisting of a prolonged pressure-time profile and brief expiratory release phase, reduces microstrain. DESIGN, SETTING, AND PARTICIPANTS In a randomized, nonblinded laboratory animal study, rats were randomized into a controlled mandatory ventilation group (n = 3) and an APRV group (n = 3). Lung injury was induced by polysorbate lavage. A thoracotomy was performed and an in vivo microscope was placed on the lungs to measure alveolar mechanics. MAIN OUTCOMES AND MEASURES In the controlled mandatory ventilation group, multiple levels of positive end-expiratory pressure (PEEP; 5, 10, 16, 20, and 24 cm H2O) were tested. In the APRV group, decreasing durations of expiratory release (time at low pressure [T(low)]) were tested. The T(low) was set to achieve ratios of termination of peak expiratory flow rate (T-PEFR) to peak expiratory flow rate (PEFR) of 10%, 25%, 50%, and 75% (the smaller this ratio is [ie, 10%], the more time the lung is exposed to low pressure during the release phase, which decreases end-expiratory lung volume and potentiates derecruitment). Alveolar perimeters were measured at peak inspiration and end expiration using digital image analysis, and strain was calculated by normalizing the change in alveolar perimeter length to the original length. Macrostrain was measured by volume displacement. RESULTS Higher PEEP (16-24 cm H2O) and a brief T(low) (APRV T-PEFR to PEFR ratio of 75%) reduced microstrain. Microstrain was minimized with an APRV T-PEFR to PEFR ratio of 75% (mean [SEM], 0.05 [0.03]) and PEEP of 16 cm H2O (mean [SEM], 0.09 [0.08]), but an APRV T-PEFR to PEFR ratio of 75% also promoted alveolar recruitment compared with PEEP of 16 cm H2O (mean [SEM] total inspiratory area, 52.0% [2.9%] vs 29.4% [4.3%], respectively; P < .05). Whole-lung strain was correlated with alveolar microstrain in tested settings (P < .05) except PEEP of 16 cm H2O (P > .05). CONCLUSIONS AND RELEVANCE Increased positive-end expiratory pressure and reduced time at low pressure (decreased T(low)) reduced alveolar microstrain. Reduced microstrain and improved alveolar recruitment using an APRV T-PEFR to PEFR ratio of 75% may be the mechanism of lung protection seen in previous clinical and animal studies.


Journal of Neurosurgery | 2012

Predictors of pulmonary complications in blunt traumatic spinal cord injury

Bizhan Aarabi; James S. Harrop; Charles H. Tator; Melvin T. Alexander; Joseph R Dettori; Robert G. Grossman; Michael G. Fehlings; Stuart E. Mirvis; Kathirkamanathan Shanmuganathan; Katie M. Zacherl; Keith D. Burau; Ralph F. Frankowski; Elizabeth G. Toups; Christopher I. Shaffrey; James D. Guest; Susan J. Harkema; Nader Habashi; Penny Andrews; Michele M. Johnson; Michael K. Rosner

OBJECT Pulmonary complications are the most common acute systemic adverse events following spinal cord injury (SCI), and contribute to morbidity, mortality, and increased length of hospital stay (LOS). Identification of factors associated with pulmonary complications would be of value in prevention and acute care management. Predictors of pulmonary complications after SCI and their effect on neurological recovery were prospectively studied between 2005 and 2009 at the 9 hospitals in the North American Clinical Trials Network (NACTN). METHODS The authors sought to address 2 specific aims: 1) define and analyze the predictors of moderate and severe pulmonary complications following SCI; and 2) investigate whether pulmonary complications negatively affected the American Spinal Injury Association (ASIA) Impairment Scale conversion rate of patients with SCI. The NACTN registry of the demographic data, neurological findings, imaging studies, and acute hospitalization duration of patients with SCI was used to analyze the incidence and severity of pulmonary complications in 109 patients with early MR imaging and long-term follow-up (mean 9.5 months). Univariate and Bayesian logistic regression analyses were used to analyze the data. RESULTS In this study, 86 patients were male, and the mean age was 43 years. The causes of injury were motor vehicle accidents and falls in 80 patients. The SCI segmental level was in the cervical, thoracic, and conus medullaris regions in 87, 14, and 8 patients, respectively. Sixty-four patients were neurologically motor complete at the time of admission. The authors encountered 87 complications in 51 patients: ventilator-dependent respiratory failure (26); pneumonia (25); pleural effusion (17); acute lung injury (6); lobar collapse (4); pneumothorax (4); pulmonary embolism (2); hemothorax (2), and mucus plug (1). Univariate analysis indicated associations between pulmonary complications and younger age, sports injuries, ASIA Impairment Scale grade, ascending neurological level, and lesion length on the MRI studies at admission. Bayesian logistic regression indicated a significant relationship between pulmonary complications and ASIA Impairment Scale Grades A (p = 0.0002) and B (p = 0.04) at admission. Pulmonary complications did not affect long-term conversion of ASIA Impairment Scale grades. CONCLUSIONS The ASIA Impairment Scale grade was the fundamental clinical entity predicting pulmonary complications. Although pulmonary complications significantly increased LOS, they did not increase mortality rates and did not adversely affect the rate of conversion to a better ASIA Impairment Scale grade in patients with SCI. Maximum canal compromise, maximum spinal cord compression, and Acute Physiology and Chronic Health Evaluation-II score had no relationship to pulmonary complications.


Shock | 2013

Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model.

Shreyas Roy; Bryanna Emr; Benjamin Sadowitz; Louis A. Gatto; Auyon Ghosh; Joshua Satalin; Kathy Snyder; Lin Ge; Guirong Wang; William Marx; David A. Dean; Penny Andrews; Anil Singh; Thomas M. Scalea; Nader Habashi; Gary F. Nieman

ABSTRACT Background: Once established, the acute respiratory distress syndrome (ARDS) is highly resistant to treatment and retains a high mortality. We hypothesized that preemptive application of airway pressure release ventilation (APRV) in a rat model of trauma/hemorrhagic shock (T/HS) would prevent ARDS. Methods: Rats were anesthetized, instrumented for hemodynamic monitoring, subjected to T/HS, and randomized into two groups: (a) volume cycled ventilation (VC) (n = 5, tidal volume 10 mL/kg; positive end-expiratory pressure 0.5 cmH2O) or (b) APRV (n = 4, Phigh = 15–20 cmH2O; Thigh = 1.3–1.5 s to achieve 90% of the total cycle time; Tlow = 0.11–0.14 s, which was set to 75% of the peak expiratory flow rate; Plow = 0 cmH2O). Study duration was 6 h. Results: Airway pressure release ventilation prevented lung injury as measured by PaO2/FIO2 (VC 143.3 ± 42.4 vs. APRV 426.8 ± 26.9, P < 0.05), which correlated with a significant decrease in histopathology as compared with the VC group. In addition, APRV resulted in a significant decrease in bronchoalveolar lavage fluid total protein, increased surfactant protein B concentration, and an increase in epithelial cadherin tissue expression. In vivo microscopy demonstrated that APRV significantly improved alveolar patency and stability as compared with the VC group. Conclusions: Our findings demonstrate that preemptive mechanical ventilation with APRV attenuates the clinical and histologic lung injury associated with T/HS. The mechanism of injury prevention is related to preservation of alveolar epithelial and endothelial integrity. These data support our hypothesis that preemptive APRV, applied using published guidelines, can prevent the development of ARDS.


JAMA Surgery | 2016

Effect of Airway Pressure Release Ventilation on Dynamic Alveolar Heterogeneity

Michaela Kollisch-Singule; Sumeet Jain; Penny Andrews; Bradford J. Smith; Katharine L. Hamlington-Smith; Shreyas Roy; David DiStefano; Emily Nuss; Josh Satalin; Qinghe Meng; William Marx; Jason H. T. Bates; Louis A. Gatto; Gary F. Nieman; Nader Habashi

IMPORTANCE Ventilator-induced lung injury may arise from heterogeneous lung microanatomy, whereby some alveoli remain collapsed throughout the breath cycle while their more compliant or surfactant-replete neighbors become overdistended, and this is called dynamic alveolar heterogeneity. OBJECTIVE To determine how dynamic alveolar heterogeneity is influenced by 2 modes of mechanical ventilation: low tidal-volume ventilation (LTVV) and airway pressure release ventilation (APRV), using in vivo microscopy to directly measure alveolar size distributions. DESIGN, SETTING, AND PARTICIPANTS In a randomized, nonblinded laboratory animal study conducted between January 2013 and December 2014, 14 rats (450-500 g in size) were randomized to a control group with uninjured lungs (n = 4) and 2 experimental groups with surfactant deactivation induced by polysorbate lavage: the LTVV group (n = 5) and the APRV group (n = 5). For all groups, a thoracotomy and in vivo microscopy were performed. Following lung injury induced by polysorbate lavage, the LTVV group was ventilated with a tidal volume of 6 mL/kg and progressively higher positive end-expiratory pressure (PEEP) (5, 10, 16, 20, and 24 cm H2O). Following lung injury induced by polysorbate lavage, the APRV group was ventilated with a progressively shorter time at low pressure, which increased the ratio of the end-expiratory flow rate (EEFR) to the peak expiratory flow rate (PEFR; from 10% to 25% to 50% to 75%). MAIN OUTCOMES AND MEASURES Alveolar areas were quantified (using PEEP and EEFR to PEFR ratio) to determine dynamic heterogeneity. RESULTS Following lung injury induced by polysorbate lavage, a higher PEEP (20-24 cm H2O) with LTVV resulted in alveolar occupancy (reported as percentage of total frame area) at inspiration (39.9%-42.2%) and expiration (35.9%-38.7%) similar to that in the control group (inspiration 53.3%; expiration 50.3%; P > .01). Likewise, APRV with an increased EEFR to PEFR ratio (50%-75%) resulted in alveolar occupancy at inspiration (46.7%-47.9%) and expiration (40.2%-46.6%) similar to that in the control group (P > .01). At inspiration, the distribution of the alveolar area of the control group was similar to that of the APRV group (P > .01) (but not to that of the LTVV group [P < .01]). A lower PEEP (5-10 cm H2O) and a decreased EEFR to PEFR ratio (≤50%) demonstrated dynamic heterogeneity between inspiration and expiration (P < .01 for both) with a greater percentage of large alveoli at expiration. Dynamic alveolar homogeneity between inspiration and expiration occurred with higher PEEP (16-24 cm H2O) (P > .01) and an increased EEFR to PEFR ratio (75%) (P > .01). CONCLUSIONS AND RELEVANCE Increasing PEEP during LTVV increased alveolar recruitment and dynamic homogeneity but had a significantly different alveolar size distribution compared with the control group. By comparison, reducing the time at low pressure (EEFR to PEFR ratio of 75%) in the APRV group provided dynamic homogeneity and a closer approximation of the dynamics observed in the control group.


Current Opinion in Critical Care | 2004

Ventilator strategies for posttraumatic acute respiratory distress syndrome: airway pressure release ventilation and the role of spontaneous breathing in critically ill patients

Nader Habashi; Penny Andrews

Purpose of reviewPatients who experience severe trauma are at increased risk for the development of acute lung injury and acute respiratory distress syndrome. The management strategies used to treat respiratory failure in this patient population should be comprehensive. Current trends in the management of acute lung injury and acute respiratory distress syndrome consist of maintaining acceptable gas exchange while limiting ventilator-associated lung injury. Recent findingsCurrently, two distinct forms of ventilator-associated lung injury are recognized to produce alveolar stress failure and have been termed low-volume lung injury (intratidal alveolar recruitment and derecruitment) and high-volume lung injury (alveolar stretch and overdistension). Pathologically, alveolar stress failure from low- and high-volume ventilation can produce lung injury in animal models and is termed ventilator-induced lung injury. The management goal in acute lung injury and acute respiratory distress syndrome challenges clinicians to achieve the optimal balance that both limits the forms of alveolar stress failure and maintains effective gas exchange. The integration of new ventilator modes that include the augmentation of spontaneous breathing during mechanical ventilation may be beneficial and may improve the ability to attain these goals. SummaryAirway pressure release ventilation is a mode of mechanical ventilation that maintains lung volume to limit intra tidal recruitment /derecruitment and improves gas exchange while limiting over distension. Clinical and experimental data demonstrate improvements in arterial oxygenation, ventilation-perfusion matching (less shunt and dead space ventilation), cardiac output, oxygen delivery, and lower airway pressures during airway pressure release ventilation. Mechanical ventilation with airway pressure release ventilation permits spontaneous breathing throughout the entire respiratory cycle, improves patient comfort, reduces the use of sedation, and may reduce ventilator days.


Journal of Applied Physiology | 2017

Physiology in Medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury

Gary F. Nieman; Joshua Satalin; Michaela Kollisch-Singule; Penny Andrews; Hani Aiash; Nader Habashi; Louis A. Gatto

Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MBP: all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the “open lung strategy,” would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MBP so as to minimize VILI will reduce the morbidity and mortality associated with ARDS.

Collaboration


Dive into the Penny Andrews's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary F. Nieman

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Louis A. Gatto

State University of New York at Cortland

View shared research outputs
Top Co-Authors

Avatar

Joshua Satalin

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Michaela Kollisch-Singule

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Sumeet Jain

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Shreyas Roy

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Benjamin Sadowitz

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Josh Satalin

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

William Marx

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge