Per Häggblom
National Veterinary Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Per Häggblom.
Acta Veterinaria Scandinavica | 2010
Martin Wierup; Per Häggblom
BackgroundThe impact of salmonella contaminated feed ingredients on the risk for spreading salmonella to pigs was assessed in response to two incidences when salmonella was spread by feed from two feed mills to 78 swine producing herds.MethodsThe assessment was based on results from the salmonella surveillance of feed ingredients before introduction to feed mills and from HACCP - based surveillance of the feed mills. Results from the mills of the Company (A) that produced the salmonella contaminated feed, were by the Chi. Square test compared to the results from all the other (B - E) feed producers registered in Sweden. Isolated serovars were compared to serovars from human cases of salmonellosis.ResultsSalmonella (28 serovars) was frequently isolated from imported consignments of soybean meal (14.6%) and rape seed meal (10.0%). Company A largely imported soybean meal from crushing plants with a history of unknown or frequent salmonella contamination. The risk for consignments of vegetable proteins to be salmonella contaminated was 2.4 times (P < 0.0006) larger for A when compared to the mills of the other companies which largely were supplied by soybean meal from a crushing plant with a low risk for salmonella contamination. Also the level of feed mill contamination of salmonella was higher for feed mills belonging to Company A in comparison to the other companies before and also after heat treatment. Four (10.5%) of the 38 serovars isolated from feed ingredients (28) and feed mills (10) were on the EU 2007 top ten list of human cases of salmonellosis and all but eight (78.9%) on a 12 year list (1997-2008) of cases of human salmonellosis in Sweden.ConclusionsSalmonella contaminated feed ingredients are an important source for introducing salmonella into the feed and food chain. Effective HACCP-based control and associated corrective actions are required to prevent salmonella contamination of feed. Efforts should be taken to prevent salmonella contamination already at the crushing plants. This is challenge for the EU - feed industry due to the fact that 98% of the use of soybean/meal, an essential feed ingredient, is imported from crushing plants of third countries usually with an unknown salmonella status.
Toxins | 2012
Patrick Berka Njobeh; Michael F. Dutton; Annica Tevell Åberg; Per Häggblom
A total of 92 commercial compound feeds from South Africa were investigated for various mycotoxins. The data reveal the highest incidence of feed contamination for fumonisins (FB) (range: 104–2999 µg/kg) followed by deoxynivalenol (DON) (range: 124–2352 µg/kg) and zearalenone (ZEA) (range: 30–610 µg/kg). The incidence of ochratoxin A (OTA) and aflatoxins (AF)-contaminated samples were generally low, i.e., 4% and 30% of samples with levels ranging between 6.4 and 17.1 µg/kg (mean: 9.9 µg/kg) for OTA and 0.2 to 71.8 µg/kg (mean: 9.0 µg/kg) for AF. No samples contained T-2 toxin or HT-2 toxin. However, all samples analyzed were contaminated with at least one mycotoxin with a majority containing several mycotoxins. In particular, 3 of 4 positive samples mainly cattle feeds that had relatively high contents of OTA (ranging from 7 to 17.1 µg/kg) also contained high amounts of AF (>27.5 µg/kg) together with FB, DON and ZEA. Apart from a few samples, the levels of mycotoxins may be regarded as safe for livestock production in South Africa. However, the persistent co-occurrence of mycotoxins in samples, especially those at high concentrations, i.e., AF and OTA, together with other mycotoxins studied, may elicit synergistic or additive effects in animals. This should raise concern as multiple contaminations may pose a risk to livestock production and health.
International Journal of Food Microbiology | 2011
Claudia Binter; Judith Maria Straver; Per Häggblom; Geert Bruggeman; Per-Anders Lindqvist; Jürgen Zentek; Mats Gunnar Andersson
Infected breeder pigs and contaminated feed represent potential sources of Salmonella introduction to fattening pig herds and may thereby cause human infections acquired via consumption of contaminated pork. Modelling approaches such as quantitative microbial risk assessment could improve the design of strategies for control and tracing of Salmonella in the feed chain. However, the construction of such models requires a thorough understanding of the dynamics of the feed chain, including production processes, microbial processes and transport logistics. The present article illustrates a conceptual model of Salmonella in the pig feed chain and explores the possibilities for quantitative modelling including identifying major gaps in data. Information was collected from peer-reviewed scientific journals, official documents and reports and by means of interviews with experts from authorities and the feed industry. Data on prevalence of Salmonella in different parts of the feed chain are difficult to compare as observed prevalence may be biased by variations in sampling procedures as well as limitations of the detection methods. There are almost no data on numbers of Salmonella in commodities of the feed chain, which often makes it difficult to evaluate risks, intervention strategies and sampling plans in a quantitative manner. Tracing the source of Salmonella contamination is hampered by the risk of cross-contamination as well as various mixing and partitioning events along the supply chain, which sometimes makes it impossible to trace the origin of a lot back to a batch or producer. Available information points to contaminated feed materials, animal vectors and persistent contamination of production environments as important sources of Salmonella in feed production. Technological procedures such as hydrothermal or acid treatment can be used to control Salmonella in feed production. However, a large fraction of pig feed is produced without decontamination procedures. Prevention of recontamination and control of moisture throughout the chain are thus critical factors for controlling Salmonella in feed production. To verify successful control it is necessary to have monitoring strategies able to detect low levels of Salmonella heterogeneously distributed in large volumes of feed and feed material in bulk. Experience from monitoring programs and research investigations indicates that sampling of dust and sweepings from control points along the production line is an efficient strategy to gain an indication of Salmonella contamination.
BMC Veterinary Research | 2009
Sevinc Koyuncu; Per Häggblom
BackgroundAnimal feed as a source of infection to food producing animals is much debated. In order to increase our present knowledge about possible feed transmission it is important to know that the present isolation methods for Salmonella are reliable also for feed materials.In a comparative study the ability of the standard method used for isolation of Salmonella in feed in the Nordic countries, the NMKL71 method (Nordic Committee on Food Analysis) was compared to the Modified Semisolid Rappaport Vassiliadis method (MSRV) and the international standard method (EN ISO 6579:2002). Five different feed materials were investigated, namely wheat grain, soybean meal, rape seed meal, palm kernel meal, pellets of pig feed and also scrapings from a feed mill elevator. Four different levels of the Salmonella serotypes S. Typhimurium, S. Cubana and S. Yoruba were added to each feed material, respectively. For all methods pre-enrichment in Buffered Peptone Water (BPW) were carried out followed by enrichments in the different selective media and finally plating on selective agar media.ResultsThe results obtained with all three methods showed no differences in detection levels, with an accuracy and sensitivity of 65% and 56%, respectively. However, Müller-Kauffmann tetrathionate-novobiocin broth (MKTTn), performed less well due to many false-negative results on Brilliant Green agar (BGA) plates. Compared to other feed materials palm kernel meal showed a higher detection level with all serotypes and methods tested.ConclusionThe results of this study showed that the accuracy, sensitivity and specificity of the investigated cultural methods were equivalent. However, the detection levels for different feed and feed ingredients varied considerably.
BMC Veterinary Research | 2013
Sevinc Koyuncu; Mats Gunnar Andersson; Charlotta Löfström; Panagiotis N. Skandamis; Antonia S. Gounadaki; Jürgen Zentek; Per Häggblom
BackgroundSalmonella control in animal feed is important in order to protect animal and public health. Organic acids is one of the control measures used for treatment of Salmonella contaminated feed or feed ingredients. In the present study, the efficacy of formic acid (FA) and different blends of FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal.ResultsThe efficacy of acid treatments varied significantly between different feed materials. The strongest reduction was seen in pelleted and compound mash feed (2.5 log10 reduction) followed by rapeseed meal (1 log10 reduction) after 5 days exposure. However, in soybean meal the acid effects were limited (less than 0.5 log10 reduction) even after several weeks’ exposure. In all experiments the survival curves showed a concave shape, with a fast initial death phase followed by reduction at a slower rate during the remaining time of the experiment.No difference in Salmonella reduction was observed between FA and a blend of FA and PA, whereas a commercial blend of FA and SF (Amasil) was slightly more efficacious (0.5-1 log10 reduction) than a blend of FA and PA (Luprocid) in compound mash feed. The Salmonella Infantis strain was found to be the most acid tolerant strain followed by, S. Putten, S. Senftenberg and S. Typhimurium. The tolerance of the S. Infantis strain compared with the S. Typhimurium strain was statistically significant (p<0.05). The lethal effect of FA on the S. Typhimurium strain and the S. Infantis strain was lower at 5°C and 15°C compared to room temperatures.ConclusionsAcid treatment of Salmonella in feed is a matter of reducing the number of viable bacterial cells rather than eliminating the organism. Recommendations on the use of acids for controlling Salmonella in feed should take into account the relative efficacy of acid treatment in different feed materials, the variation in acid tolerance between different Salmonella strains, and the treatment temperature.
Mycopathologia | 1991
Torbjörn Holmberg; Anna Breitholtz-Emanuelsson; Per Häggblom; Olof Schwan; Karl Hult
Ochratoxin A contamination of cereal feed grain was monitored during October 1989–September 1990 by analysis of blood samples from slaughter swine in Sweden. The detection of ochratoxin A in swine blood was used as a method to identify swine herds fed ochratoxin A contaminated feed. The contamination level of ochratoxin A in the blood of the positive herds was in the range 2–45 ng/ml with the mean concentration 5.2 ng/ml. Feed samples for mycological analysis were collected from both ochratoxin A positive herds (⩾2 ng/ml blood) and ochratoxin A negative herds (<2 ng/ml blood). From the ochratoxin A positive herds and the ochratoxin A negative herds 22 and 21 feed samples were collected, respectively. No quantitative differences in mould content, as determined by colony forming units, were observed between the two groups. However, there were differences in the mycoflora. The incidence of storage fungi (Penicillium and Aspergillus spp.) was significantly higher (p < 0.05) in feed from ochratoxin A positive herds. Particularly, Penicillium verrucosum was found to be significantly more common (p < 0.001). Altogether 274 isolates were screened for their ability to produce ochratoxin A. Ochratoxin A producers were found only within P. verrucosum; 38% of the 63 isolates produced detectable amounts of ochratoxin A. Ochratoxin A producing isolates of P. verrucosum were found in 60% of the feed samples collected from ochratoxin A positive swine herds and in one sample (5% ) of the feed samples collected from the ochratoxin A negative herds.
Food and Chemical Toxicology | 2003
Viktoria Wenehed; Alexey Solyakov; Ingrid Thylin; Per Häggblom; Anna Forsby
The occurrence of mycotoxin-producing moulds in animal feed is a severe problem since the quality of the feed is reduced and thereby both animal and human health can be affected. Aspergillus fumigatus is a common fungus found in improperly stored animal feed and the abundance of spores of the fungus is frequently spread into the air, exposing individuals who stay in areas where the fungus develops. The cytotoxic activities of extracts from three different A. fumigatus-inoculated substrates: (i) CzDox-broth; (ii) maize; and (iii) commercial feed grain as well as from gliotoxin, a mycotoxin produced by A. fumigatus, were studied in vitro using human neuroblastoma (SH-SY5Y) cells. Extracts of cultures from the gliotoxin-producing strain of A. fumigatus possessed cytotoxic activity in the cell system. Pure gliotoxin caused a 20% reduction of total protein content (EC(20)) at 0.12+/-0.02 microM, but also a 20% reduction in the number of neurites per cell body as compared with control cells (ND(20)) at 0.06+/-0.01 microM. The results show that use of the SH-SY5Y cell model is a promising approach for detecting toxic activity in animal feed. Furthermore, the neurite degeneration of gliotoxin has to be investigated for estimation of a potentially neurotoxic risk.
Frontiers in Plant Science | 2015
Islam Abd El Daim; Per Häggblom; Magnus Karlsson; Elna Stenström; Salme Timmusk
Fusarium graminearum and F. culmorum are the causing agents of a destructive disease known as Fusarium head blight (FHB). FHB is a re-emerging disease in small grain cereals which impairs both the grain yield and the quality. Most serious consequence is the contamination of grain with Fusarium mycotoxins that are severe threat to humans and animals. Biological control has been suggested as one of the integrated management strategies to control FHB. Paenibacillus polymyxa is considered as a promising biocontrol agent due to its unique antibiotic spectrum. P. polymyxa A26 is an efficient antagonistic agent against Fusarium spp. In order to optimize strain A26 production, formulation and application strategies traits important for its compatibility need to be revealed. Here we developed a toolbox, comprising of dual culture plate assays and wheat kernel assays, including simultaneous monitoring of FHB causing pathogens, A26, and mycotoxin production. Using this system we show that, besides generally known lipopeptide antibiotic production by P. polymyxa, biofilm formation ability may play a crucial role in the case of stain A26 F. culmorum antagonism. Application of the system for effective strain selection and maintenance is discussed.
International Journal of Food Microbiology | 2011
Sevinc Koyuncu; Gunnar Andersson; Pieter Vos; Per Häggblom
In the present study we investigated if the microarray platforms Premi®Test Salmonella (PTS) and Salmonella array (SA) could be applied for the identification and typing of Salmonella in artificially contaminated animal feed materials. The results were compared to the culture-based MSRV method and serotyping according to Kauffman-White. The SA platform showed a specificity of 100% for the identification of Salmonella compared to 93% with the PTS platform and a sensitivity of 99% or 100%, respectively. Among all identified Salmonella serotypes, 56% with the SA platform and 81% with the PTS platform were correctly identified. The difference in probe signal intensity for each probe was higher between duplicates analyzed with the SA platform than with the PTS platform. Attempts to use the microarray platforms from BPW resulted in many false negative samples and incorrect typing results. The microarray platforms tested were simple to use and might have a potential in tracing studies for Salmonella in the feed chain particularly when rapid information about serotypes are important.
Journal of Applied Microbiology | 2014
Jenny Schelin; Gunnar Andersson; Håkan Vigre; Börje Norling; Per Häggblom; Jeffrey Hoorfar; Peter Rådström; Charlotta Löfström
Three pre‐PCR processing strategies for the detection and/or quantification of Salmonella in naturally contaminated soya bean meal were evaluated.